Stress-Intensity Factors for Very Short Cracks in Arbitrary Pressurized Shells

1976 ◽  
Vol 43 (4) ◽  
pp. 657-662 ◽  
Author(s):  
J. G. Simmonds ◽  
M. R. Bradley

A pressurized, shallow, elastically isotropic shell containing a crack is considered. The crack is assumed to lie along a line of curvature of the midsurface. The equations governing the essentially equivalent residual problem, in which the only external load is a uniform normal stress along the faces of the crack, are reduced via Fourier transforms to two coupled singular integral equations. The solutions of these equations depend on three parameters: λ, a dimensionless crack length, κ, the dimensionless Gaussian curvature of the midsurface at the center of the crack, and ν, Poisson’s ratio. Perturbation solutions for small values of λ are obtained by expanding the kernels of the integral equations in series. Explicit formulas for stretching and bending stress-intensity factors are obtained. These represent the first-order corrections due to curvature effects of the well-known flat plate results. The connection with the work of Copley and Sanders for cylindrical shells and Folias for spherical and cylindrical shells is indicated.

1984 ◽  
Vol 51 (4) ◽  
pp. 780-786 ◽  
Author(s):  
A.-Y. Kuo

Dynamic stress intensity factors for an interfacial crack between two dissimilar elastic, fully anisotropic media are studied. The mathematical problem is reduced to three coupled singular integral equations. Using Jacobi polynomials, solutions to the singular integral equations are obtained numerically. The orders of stress singularity and stress intensity factors of an interfacial crack in a (θ(1)/θ(2)) composite solid agree well with the finite element solutions.


1975 ◽  
Vol 42 (2) ◽  
pp. 353-357 ◽  
Author(s):  
L. M. Keer ◽  
K. Chantaramungkorn

The problem of a double lap joint is analyzed and solved by using integral transform techniques. Singular integral equations are deduced from integral transform solutions using boundary and continuity conditions appropriate to the problem. Numerical results are obtained for the case of identical materials for the cover and central layers. Stress-intensity factors are calculated and presented in the form of a table and contact stresses are shown in the form of curves for various values of geometrical parameters.


2007 ◽  
Vol 348-349 ◽  
pp. 197-200
Author(s):  
Xin Yan Tang

Using single crack solution and regular plane harmonic function, the Saint-Venant bending problem of a cracked cylinder with general cross section is formulated in terms of two sets of boundary-singular integral equations, which can be solved by using the methods for combination of boundary element and singular integral equation methods. The concept of bending center used in strength of materials is extended to this bending problem. Theoretical formulae to calculate the bending center and stress intensity factors in cracked cylinder are derived and expressed by the solutions of the integral equations. Based on these results, some numerical examples are given for different configurations of the cylinder cross section as well as the crack parameters.


1974 ◽  
Vol 41 (4) ◽  
pp. 1007-1013 ◽  
Author(s):  
F. Erdogan ◽  
G. D. Gupta ◽  
M. Ratwani

The plane interaction problem for a circular elastic inclusion embedded into an elastic matrix which contains an arbitrarily oriented crack is considered. Using the existing solutions for the edge dislocations [6] as Green’s functions, first the general problem of a through crack in the form of an arbitrary smooth arc located in the matrix in the vicinity of the inclusion is formulated. The integral equations for the line crack are then obtained as a system of singular integral equations with simple Cauchy kernels. The singular behavior of the stresses around the crack tips is examined and the expressions for the stress-intensity factors representing the strength of the stress singularities are obtained in terms of the asymtotic values of the density functions of the integral equations. The problem is solved for various typical crack orientations and the corresponding stress-intensity factors are given.


2018 ◽  
Vol 12 (3) ◽  
pp. 237-242
Author(s):  
Heorgij Sulym ◽  
Viktor Opanasovych ◽  
Mykola Slobodian ◽  
Yevhen Yarema

Abstract The paper presents the solution linear elasticity problem for an isotropic plate weakened by a hole and two co-axial cracks. The plate is exerted by uniform traction at infinity. The corresponding 2D problem is solved by the method of Kolosova-Muskhelishvili complex potentials. The method implies reduction of the problem to simultaneous singular integral equations (SIE) for the functions defined the region of the cracks and hole. For particular case the solution the SIE is obtained analytically in a closed form. A thorough analysis of the stress intensity factors (SIF) is carried out for various cases of the hole shape: penny-shaped, elliptical and rectangular.


Sign in / Sign up

Export Citation Format

Share Document