Conical Flows in Metal Forming

1972 ◽  
Vol 94 (1) ◽  
pp. 213-222 ◽  
Author(s):  
N. Ahmed

An improved velocity field based on the solution to an incompressible fluid flow is used to establish an upper bound approach for conical flows in metal forming. From a three parameter characterization of the equivalent stress-equivalent strain data on copper and aluminum, the effects of work hardening on forming stresses, maximum reduction ratios, optimum cone angles, and dead zone angles are studied for drawing, conventional, and hydrostatic extrusion. Results for a rigid-plastic material are obtained as a special case of the work hardening material. Experimental data are offered to show an excellent correlation with theory. A representation for the redundant work factor is developed that incorporates in it the effects of material properties and flow geometry. The existence of maximum pressure well inside the plastic region is pointed out and the possibility of introducing the forming fluid at some distance inside the die to facilitate better lubrication is examined.

Author(s):  
Young H. Park

In this paper, material processing simulation is carried out using a meshfree method. With the use of a meshfree method, the domain of the workpiece is discretized by a set of particles without using a structured mesh to avoid mesh distortion difficulties which occurred during the course of large plastic deformation. The proposed meshfree method is formulated for rigid-plastic material. This approach uses the flow formulation based on the assumption that elastic effects are insignificant in the metal forming operation. In the rigid-plastic analysis, the main variable of the problem becomes flow velocity rather than displacement. A numerical example is solved to validate the proposed method.


Author(s):  
T X Yu ◽  
W Johnson

Based on experiments on the bending of metal strips into cylindrical dies using a semi-circular ended punch (1) a theoretical analysis of this metal forming process is presented to predict the punch load—punch travel characteristic and the clearance between the punch pole and the mid-point of the strip. Elastic/plastic and rigid/plastic material idealizations are employed, and the effect of friction between the strip and the die is also considered. The theoretical predictions show good agreement with the experimental results and are useful for designers.


1973 ◽  
Vol 15 (6) ◽  
pp. 410-421 ◽  
Author(s):  
B. Parsons ◽  
P. R. Milner ◽  
B. N. Cole

The punch pressure required to injection upset a cylindrical billet of an isotropic, non-work-hardening, rigid–plastic material is derived using an upper bound (velocity field) technique and by a ‘slab’ stress analysis. A method for applying the theory to the injection upsetting of work-hardening materials is evolved and the validity of this application is demonstrated by the results of experiments using pure aluminium, an aluminium alloy and copper.


2016 ◽  
Vol 713 ◽  
pp. 195-198
Author(s):  
Sergei Alexandrov

The main objective of the present paper is to demonstrate, by means of a boundary value problem permitting a closed-form solution, that no solution exists under certain conditions in the case of a rigid/plastic material model including a damage evolution equation. The source of this feature of the solution is the sticking friction condition, which is often adopted in the metal forming literature.


1984 ◽  
Vol 106 (2) ◽  
pp. 127-131 ◽  
Author(s):  
K. Mori ◽  
K. Osakada ◽  
M. Fukuda

A simple method is presented for measuring the distribution of tool contact pressure in metal forming by using a pressure sensitive film which detects the contact pressure from the change in color density. In the method, a sufficiently hard sheet metal compared to the workpiece is inserted between the workpiece and the pressure sensitive film in order to eliminate the influence of frictional shear stress at the tool-workpiece interface on the measured result. Since the maximum pressure which can be determined by the film is 150MPa, lead is used as a workpiece material. Distributions of tool contact pressure are measured in upsetting of cylindrical billets, in free forging of plates of various shapes, and also in backward extrusion of a can. The measured distributions agree well with those computed by the rigid-plastic finite element method.


1971 ◽  
Vol 38 (4) ◽  
pp. 1053-1056
Author(s):  
Nazeer Ahmed ◽  
P. S. Venkatesan ◽  
J. Waldman

Author(s):  
Young H. Park

In this paper, material processing simulation is carried out using a meshfree method. The domain of the workpiece is discretized using the Lagrangian Reproducing Kernel Particle Method (RKPM) where no external meshes are used. The meshfree method is formulated for elasto-plastic material model as well as rigid-plastic model. For elasto-plastic model, a finite plasticity theory is formulated based on the multiplicative decomposition to handle large deformation problems. A rigid-plastic material model is also employed using flow formulation based on the assumption that elastic effects are insignificant in the metal forming operation. A comparative study between elasto-plastic and rigid-plastic RKPM methods was conducted to demonstrate consistency of the results from elasto-plastic and rigid-plastic simulations for a metal forming application.


Author(s):  
А.И. Мамонтов ◽  
М.В. Китаев ◽  
К.А. Молоков ◽  
В.В. Новиков ◽  
О.Э. Суров

При выходе судна на необорудованный берег днище корпуса касается поверхности грунта, давление грунта на корпус значительно превышает забортное давление воды. Для обеспечения безопасности эксплуатации судна следует знать величину повышенного давления, определять эксплуатационные ограничения или усиливать конструкцию днища корпуса. Сила, действующая на днище, определяет траекторию движения носовой части корпуса. По траектории можно определить эту силу, площадь контакта, давление грунта и его свойства. Зная свойства грунта можно решить и обратную задачу: смоделировать траекторию, силу, максимальное давление и площадь контакта для более тяжелых условий швартовки. Например, при большей бальности волнения, скорости или водоизмещении определить усиления конструкций корпуса: требования к толщине наружной обшивки, размерам днищевых балок. Давление зависит от угла наклона днища судна и характеристик морского дна, поэтому для решения поставленной задачи требуется моделировать форму носовой части и свойства грунта: плотность, коэффициент трения, угол внутреннего трения, сцепление. Для нахождения максимального давления следует определять всю траекторию при контакте с грунтом, так как параметры движения на каждом шаге зависят от предыдущих шагов, то есть от «истории» взаимодействия корпуса с грунтом. На траекторию влияют параметры судна: форма корпуса, скорость, водоизмещение и высота волн в месте швартовки. Корпус судна считается абсолютно жестким телом по отношению к материалу грунта. Грунт рассматривается как идеально жесткопластический материал. Упругие деформации пренебрежимо малы по сравнению с пластическими. When the ship beaches to an unequipped shore, the bottom of the hull contacts the seabed surface, the soil pressure on the hull is higher than water pressure. To ensure the safe beach operation of the ship, we have to know the magnitude of the high pressure, determine operational limitations or gain the hull bottom structure. The force acting on the bottom determines the trajectory of the bow. From the trajectory, this force, contact area, soil pressure and its properties can be determined. Knowing the properties of the soil, the inverse problem can also be solved: to simulate the trajectory, force, maximum pressure and contact area for more rough mooring conditions. For example, with a greater pitching, speed or displacement, determine the reinforcement of the hull structures: requirements for the thickness of the shell, the size of the bottom beams. Pressure depends on the angle of ship bottom inclination and the characteristics of the seabed, therefore, to solve the problem, it is necessary to simulate the shape of the bow and soil properties: density, coefficient of friction, angle of internal friction, coherence. To find the maximum pressure, you should determine the full trajectory in contact with the seabed, since the motion parameters at each step depend on the previous steps, that is, on the “history” of the hull’s interaction with the seabed. The ship's parameters influence the trajectory: hull shape, speed, displacement and wave height at the beaching point. The hull is considered absolutely rigid body against to the material of the soil. Soil is considered as ideally rigid plastic material. Elastic deformations are negligible compared to plastic ones.


Author(s):  
Борис Гурьевич Миронов ◽  
Юрий Борисович Миронов

В работе исследовано кручение стержней из анизотропно упрочняющегося жесткопластического материала. Получены интегралы, определяющие напряженное и деформированное состояния стержня при линеаризованном условии пластичности. Построены линии разрыва напряжений. The torsion of rods made of anisotropically hardening rigid-plastic material is studied. Integrals are obtained that determine the stress and strain States of the rod under the linearized plasticity condition. Stress discontinuity lines are constructed.


Sign in / Sign up

Export Citation Format

Share Document