Stress and Displacement Analysis of a Shell Intersection

1970 ◽  
Vol 92 (2) ◽  
pp. 303-308 ◽  
Author(s):  
K. C. Pan ◽  
R. E. Beckett

The problem of two normally intersecting cylindrical shells subjected to internal pressure is considered. The differential equations used for the shells are solved subject to the boundary conditions imposed along the intersection between the two cylinders. Details of a procedure for obtaining a numerical solution are given. Numerical results for a radius ratio of 1:2 are presented. Problems encountered in the numerical computation are discussed and the results of the analysis are compared with experiment.

Author(s):  
Mohamed M. Khader

AbstractThis paper is devoted to introduce a numerical treatment using the generalized Adams-Bashforth-Moulton method for some of the variable-order fractional modeling dynamics problems, such as Riccati and Logistic differential equations. The fractional derivative is described in Caputo variable-order fractional sense. The obtained numerical results of the proposed models show the simplicity and efficiency of the proposed method. Moreover, the convergence order of the method is also estimated numerically.


Author(s):  
Cemil Bagci

Abstract Exact elasticity solutions for stresses and deflections (displacements) in curved beams and rings of varying thicknesses are developed using polar elasticity and state of plane stress. Basic forms of differential equations of equilibrium, stress functions, and differential equations of compatibility are given. They are solved to develop expressions for radial, tangential, and shearing stresses for moment, force, and combined loadings. Neutral axis location for each type of loading is determined. Expressions for displacements are developed utilizing strain-displacement relationships of polar elasticity satisfying boundary conditions on displacements. In case of full rings stresses are as in curved beams with properly defined moment loading, but displacements differ satisfying different boundary conditions. The developments for constant thicknesses are used to develop solutions for curved beams and rings with T-sections. Comparative numerical results are given.


2013 ◽  
Vol 2013 ◽  
pp. 1-5
Author(s):  
Necdet Bildik ◽  
Mustafa Inc

We present a comparison between Adomian decomposition method (ADM) and Tau method (TM) for the integro-differential equations with the initial or the boundary conditions. The problem is solved quickly, easily, and elegantly by ADM. The numerical results on the examples are shown to validate the proposed ADM as an effective numerical method to solve the integro-differential equations. The numerical results show that ADM method is very effective and convenient for solving differential equations than Tao method.


2012 ◽  
Vol 2012 ◽  
pp. 1-20 ◽  
Author(s):  
Francesco Costabile ◽  
Anna Napoli

A class of methods for the numerical solution of high-order differential equations with Lidstone and complementary Lidstone boundary conditions are presented. It is a collocation method which provides globally continuous differentiable solutions. Computation of the integrals which appear in the coefficients is generated by a recurrence formula. Numerical experiments support theoretical results.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Emran Tohidi ◽  
M. M. Ezadkhah ◽  
S. Shateyi

This paper presents a computational approach for solving a class of nonlinear Volterra integro-differential equations of fractional order which is based on the Bernoulli polynomials approximation. Our method consists of reducing the main problems to the solution of algebraic equations systems by expanding the required approximate solutions as the linear combination of the Bernoulli polynomials. Several examples are given and the numerical results are shown to demonstrate the efficiency of the proposed method.


1968 ◽  
Vol 35 (1) ◽  
pp. 73-79 ◽  
Author(s):  
S. C. Batterman

Axisymmetric plastic buckling of axially compressed cylindrical shells is studied for semi-infinite shells and shells of finite length subject to free-edge boundary conditions. It is shown that the length of the cylinder has a negligible effect on the buckling load. Reductions in buckling stresses from the classical simple-support value are significant, with the amount of reduction dependent on the details of the variation of tangent modulus with stress. Numerical results are presented for cylinders composed of 2024-T4 aluminum and 3003-0 aluminum.


Sign in / Sign up

Export Citation Format

Share Document