A Study of Wall Ironing by the Finite Element Technique

1978 ◽  
Vol 100 (1) ◽  
pp. 31-36 ◽  
Author(s):  
E. I. Odell

Wall ironing has been analyzed using an elastic-plastic finite element technique. The effects that the ironing ring semi-cone angle and friction have on the maximum reduction ratio are studied in detail. Stress contours are given for a typical set of operating parameters. Several ram load/displacement curves are provided and compared with upper and lower bound loads.

1984 ◽  
Vol 106 (4) ◽  
pp. 476-482
Author(s):  
F. T. C. Loo

Numerical methods for the analysis of the elastic-plastic fracture problem using a special finite element technique are presented. A brief description of some concepts in elastic-plastic fracture mechanics and of the finite element method is followed by the formulation procedure of the stiffness matrix using eight-noded quadrilateral isoparametric elements. After a terse discussion of the initial stress method, the procedure of computation is extended in the analysis by using an incremental load process. The size and the shape of the plastic zone of a center crack specimen is investigated. Results are presented in graphical form.


1974 ◽  
Vol 41 (2) ◽  
pp. 355-359 ◽  
Author(s):  
J. L. Hill ◽  
C. G. Davis

The effect of initial forces on the vibration and stability of curved, clamped, fluid conveying tubes is analyzed by the finite-element technique. The tubes are initially planar with general center-line shapes approximated by constant curvature arcs. The effect of internal pressure is included. Numerical results are presented with, and without, the effects of the initial in-plane forces, for circular arcs S, L, and spiral configurations. Neglecting initial forces results in out-of-plane buckling, while including these forces prevents buckling within the elastic limit, in all configurations studied.


Sign in / Sign up

Export Citation Format

Share Document