A Critique of MHD Power Generation

1970 ◽  
Vol 92 (3) ◽  
pp. 217-230
Author(s):  
William D. Jackson ◽  
Michael Petrick ◽  
James E. Klepeis

Magnetohydrodynamic electrical power generation is a promising new technique for upgrading the efficiency of converting heat into electricity. The concept has been explored intensively but on a small scale during the past ten years, and the initial enthusiasm in it has been confirmed. Its utilization in base-load plants, in addition to increasing overall efficiency, can also lead to important reductions in the adverse environmental effects of thermal and air pollution. The projected efficiencies of large dual cycle systems are initially in the range of 47–50 percent, and improvements in technology could later increase this to 60 percent. In an MHD system, energy is extracted from a flowing electrically conducting fluid. The fluid may be either a seeded plasma or a liquid metal. Various MHD power cycles and systems are therefore under consideration. The status of these systems will be reviewed with emphasis on their application to large central-station commercial systems. The major technological problems and progress in the three major cycles (open cycle, closed-cycle plasma, and closed-cycle liquid metal) will be discussed in depth. In the open-cycle system, the engineering solutions that have been proposed for the major problems in the generator and auxiliary equipment will be detailed. In addition, the experience gained from the operation of a succession of generators will be summarized. In the case of the closed-cycle plasma system, the progress that has been made toward developing a generator with the requisite conversion efficiency will be cited. Recent cycle analyses that have established the conditions for matching these systems to current heat sources will also be reviewed and their implications noted. The potential of developing liquid-metal MHD systems for commercial application will be explored in the light of recently obtained experimental and analytical performance information. In particular, promising new techniques that can lead to improved efficiencies will be detailed.

Sadhana ◽  
1984 ◽  
Vol 7 (1) ◽  
pp. 1-72
Author(s):  
V K Rohatgi ◽  
N Venkatramani

Author(s):  
J. F. Barnes

The purpose of this paper is to examine some possibilities for achieving high gas temperatures in the turbines of both open-cycle and closed-cycle plant and to show how some of the experience gained from research, development, and design of internally cooled blading for aero-engines can be applied to industrial power generation. For the short-term future, preferred schemes would seem to embrace the use of internal air cooling for open-cycle plant and refractory metals without cooling for closed-cycle nuclear plant.


Author(s):  
Colin F. McDonald

This paper has been written exactly 50 years after the first disclosure of a closed-cycle gas turbine concept with a simplistic uranium heater. Clearly, this plant was ahead of its time in terms of technology readiness, and the closed-cycle gas turbine was initially deployed in a cogeneration mode burning dirty fuels (e.g., coal, furnace gases). In the 1950s through the mid 1980s about 20 of these plants operated providing electrical power and district heating for European cities. The basic concept of a nuclear gas turbine plant was demonstrated in the USA on a small scale in 1961 with a mobile closed-cycle nitrogen gas turbine [330 KW(e)] coupled with a nuclear reactor. In the last three decades, closed-cycle gas turbine research and development, particularly in the U.S. has focused on space power systems, but today the utility size gas turbine-modular helium reactor (GT-MHR) is on the verge of being realized. The theme of this paper traces the half century of closed-cycle gas turbine evolution, and discusses the recent enabling technologies (e.g., magnetic bearings, compact recuperator) that now make the GT-MHR close to realization. The author would like to dedicate this paper to the late Professor Curt Keller who in 1935 filed the first closed-cycle gas turbine patent in Switzerland, and who exactly 50 years ago, first described a power plant involving the coupling of a helium gas turbine with a uranium heater.


Author(s):  
Gulian A. K. Crommelin ◽  
Walter F. Crommelin

Gas turbines in combination with a nuclear heat source have been subject for study for some years. This paper is a logical follow up on previous papers regarding small scale nuclear power generation using gas turbines with a well-proven, inherently safe nuclear heat source. In the Netherlands the NEREUS project has been working on this concept since 1993. The acronym NEREUS describes very well the goals of this project. (Ref 1, 2, 3, 4, 5). NEREUS stands for: a Natural safe, Efficient, Reactor, Easy to operate, Ultimately simple and Small. Current studies focus on the gas turbine part of the installation. After three years of studying the possibilities of the closed cycle helium gas turbine, the NEREUS project returned in 2000 to its original thought of using an existing open-cycle gas turbine or components of such an engine, as energy conversion unit. The paper starts with an introduction on why nuclear power should get more attention, basically explaining “the reasons why” of the NEREUS project. Secondly the paper gives an overview of the main characteristics of the nuclear heat source. Thirdly the paper will discuss the current study to determine the specifications of an open-cycle gas turbine for the NEREUS installation. Attention is given to the way such an open-cycle gas turbine can be controlled. The nuclear heat source is controlled by the laws of physics and it is not recommended to intervene under any circumstances with this very important safety feature.


2021 ◽  
Author(s):  
Sahishnukumar Shah

The small-scale vertical axis wind turbine is designed and modeled in this project, considering all aspects of wind turbine such as Blade design, stator design, rotor design and converter system design. Electric Power has become a prime necessity for any country for economic development. The conventional fuel sources for power generation are depleting fast. The favorable alternatives are renewable energy sources. Although more invention has to be carried out in the field of renewable energy sources, every little effort in this direction may provide a solution to reach most economical power generation point. Hence the same topic was selected for Masters Project. The goal of this project is to design a small scale Vertical Axis Wind Turbine, which is capable of producing electrical power even with low wind velocity. It can be placed on road dividers, sidetracks of train or remote places i.e. villages, military camps, where it is not economical to transmit power from power plants. Implementation of such project would reduce the dependence of an industry or remote houses, on electricity board.


Sign in / Sign up

Export Citation Format

Share Document