Laminar and Turbulent Free Convection From Elliptic Cylinders, With a Vertical Plate and Horizontal Circular Cylinder as Special Cases

1976 ◽  
Vol 98 (1) ◽  
pp. 72-80 ◽  
Author(s):  
G. D. Raithby ◽  
K. G. T. Hollands

Heat transfer by free convection from thin elliptic cylinders is predicted, accounting for both the effect of thick boundary layers at low Rayleigh numbers and the influence of turbulence at higher Rayleigh numbers. Isothermal and constant heat flux boundary conditions are treated. The results are compared with experimental data, which are available for the limiting cases of large eccentricity (vertical plate) and small eccentricity (horizontal circular cylinder); the agreement is excellent. Accurate correlation equations, from which the average heat transfer can be calculated, are given.

2018 ◽  
Vol 6 (2) ◽  
pp. 98-114 ◽  
Author(s):  
Hassan K. Abdullah ◽  
Haneen H. Rahman

Improvement of  free convection heat transfer from three finned cylinders arranged at a triangle shape fixed between two walls has been investigated in this study. Three mild steel finned cylinders fixed between two walls from Pyrex glass have been used as a test rig. It has been changed the spacing between the cylinders (X/D=1,2,3 & S/D=2,4,6) and the head orientation of a triangle to the top under constant heat flux values (38, 254, 660, 1268) W/m2 and compare with case of three finned cylinders arranged in vertical array in line fixed between two wall. The experiments are carried for Rayleigh number (Ra) from (15x103 to 14 x104 ) and Prandtl  number from (0.706-0.714 ). The results indicated an increase in Nu with increasing Ra for all cylinders. Furthermore,hx and Nu increased proportionally with the increasing of cylinder spacings for all heat fluxes. Also the experimental results show the case of triangle arrangement is improvement the heat transfer more than case of vertical arrangement. Heat transfer dimensionless correlating equation is also proposed.              Nomeclature: Ax: surface area(m2), T∞: surrounding temperature(k), D: the outer diameter of fin (m), Kf: the thermal conductivity for air at film temperature(W/m.k), hx: Local convection heat transfer(W/m2.k),  Gravitational acceleration(m/s2), I: Electric current (Amp), Nu: Nusselt number, Pr: Prandtl number


1993 ◽  
Vol 115 (3) ◽  
pp. 621-630 ◽  
Author(s):  
G. F. Jones ◽  
J. Cai

We present a numerical study of transient natural convection in a rectangular open thermosyphon having asymmetric thermal boundary conditions. One vertical wall of the thermosyphon is either heated by constant heat flux (“warmup”) or cooled by convection to the surroundings (“cooldown”). The top of the thermosyphon is open to a large reservoir of fluid at constant temperature. The vorticity, energy, and stream-function equations are solved by finite differences on graded mesh. The ADI method and iteration with overrelaxation are used. We find that the thermosyphon performs quite differently during cooldown compared with warmup. In cooldown, flows are mainly confined to the thermosyphon with little momentum and heat exchange with the reservoir. For warmup, the circulation resembles that for a symmetrically heated thermosyphon where there is a large exchange with the reservoir. The difference is explained by the temperature distributions. For cooldown, the fluid becomes stratified and the resulting stability reduces motion. In contrast, the transient temperature for warmup does not become stratified but generally exhibits the behavior of a uniformly heated vertical plate. For cooldown and Ra > 104, time-dependent heat transfer is predicted by a closed-form expression for one-dimensional conduction, which shows that Nu → Bi1/2/A in the steady-state limit. For warmup, transient heat transfer behaves as one-dimensional conduction for early times and at steady state and for Ra* ≥ 105, can be approximated as that for a uniformly heated vertical plate.


Sign in / Sign up

Export Citation Format

Share Document