Visual Observations and Torque Measurements in the Taylor Vortex Regime Between Eccentric Rotating Cylinders

1971 ◽  
Vol 93 (1) ◽  
pp. 121-129 ◽  
Author(s):  
P. Castle ◽  
F. R. Mobbs ◽  
P. H. Markho

The instability of Taylor vortices in the flow between a stationary outer cylinder and an eccentric rotating inner cylinder has been investigated by visual observations and by torque measurements. It is shown that both a “weak” and “strong” wavy mode of instability can be detected by torque measurements, giving critical Taylor numbers in good agreement with visual observations.

1976 ◽  
Vol 75 (1) ◽  
pp. 1-15 ◽  
Author(s):  
J. A. Cole

Critical speeds for the onset of Taylor vortices and for the later development of wavy vortices have been determined from torque measurements and visual observations on concentric cylinders of radius ratios R1/R2 = 0·894–0·954 for a range of values of the clearance c and length L: c/R1 = 0·0478–0·119 and L/c = 1–107. Effectively zero variation of the Taylor critical speed with annulus length was observed. The speed at the onset of wavy vortices was found to increase considerably as the annulus length was reduced and theoretical predictions are realistic only for L/c values exceeding say 40. The results were similar for all four clearance ratios examined. Preliminary measurements on eccentrically positioned cylinders with c/R1 = 0·119 showed corresponding effects.


1968 ◽  
Vol 90 (1) ◽  
pp. 285-296 ◽  
Author(s):  
J. H. Vohr

The critical speeds for onset of Taylor vortices inflow between eccentric rotating cylinders are determined by means of torque measurements for various eccentricity ratios and clearance ratios of the cylinders. Results are compared with the theoretical and experimental work of other investigators. Visual studies are made of the flow in both the Taylor vortex and turbulent flow regimes. Friction factor data are obtained for Reynolds numbers up to 40,000.


Author(s):  
P. Castle ◽  
F. R. Mobbs

The effect of varying the eccentricity on the appearance of Taylor vortices in journal bearing oil films, and the subsequent transition to turbulent flow, has been studied by means of visual observations and torque measurements. The vortices have been made visible using a suspension of aluminium paint pigment in the fluid, and also by dye injection, in an apparatus having a perspex outer cylinder. When the cylinders are eccentric, transition from laminar to turbulent flow is observed to proceed in four stages, an additional instability being present when compared with the concentric cylinder case. Only the second of these transitions causes a distinct change in the slope of the torque–speed characteristic.


Author(s):  
Emna Berrich ◽  
Fethi Aloui ◽  
Jack Legrand

In the simplest and original case of study of the Taylor–Couette TC problems, the fluid is contained between a fixed outer cylinder and a concentric inner cylinder which rotates at constant angular velocity. Much of the works done has been concerned on steady rotating cylinder(s) i.e. rotating cylinders with constant velocity and the various transitions that take place as the cylinder(s) velocity (ies) is (are) steadily increased. On this work, we concentrated our attention in the case in which the inner cylinder velocity is not constant, but oscillates harmonically (in time) clockwise and counter-clockwise while the outer cylinder is maintained fixed. Our aim is to attempt to answer the question if the modulation makes the flow more or less stable with respect to the vortices apparition than in the steady case. If the modulation amplitude is large enough to destabilise the circular Couette flow, two classes of axisymmetric Taylor vortex flow are possible: reversing Taylor Vortex Flow (RTVF) and Non-Reversing Taylor Vortex Flow (NRTVF) (Youd et al., 2003; Lopez and Marques, 2002). Our work presents an experimental investigation of the effect of oscillatory Couette-Taylor flow, i.e. both the oscillation frequency and amplitude on the apparition of RTVF and NRTVF by analysing the instantaneous and local mass transfer and wall shear rates evolutions, i.e. the impact of vortices at wall. The vortices may manifest themselves by the presence of time-oscillations of mass transfer and wall shear rates, this generally corresponds to an instability apparition even for steady rotating cylinder. On laminar CT flow, the time-evolution of wall shear rate is linear. It may be presented as a linear function of the angular velocity, i.e. the evolution is steady even if the angular velocity is not steady. At a “critical” frequency and amplitude, the laminar CT flow is disturbed and Taylor vortices appear. Comparing to a steady velocity case, oscillatory flow accelerate the instability apparition, i.e. the critical Taylor number corresponds to the transition is smaller than that of the steady case. For high oscillation amplitudes of the inner cylinder rotation, the mass transfer time-evolution has a sinusoidal evolution with non equal oscillation amplitudes. If the oscillation amplitude is large enough, it can destabilize the laminar Couette flow, Taylor vortices appears. The vortices direction can be deduced from the sign of the instantaneous wall shear rate time evolution.


1974 ◽  
Vol 96 (1) ◽  
pp. 69-70 ◽  
Author(s):  
J. A. Cole

Observations of Taylor vortex formation in a short annular clearance show that the final vortex size varies discontinuously with annulus length, ranging from 75 to 115 percent of the theoretical size, and is apparently determined as vortices spread axially inwards from the ends of the annulus by the minimum survival size of the last-formed vortex pair.


The stability of fluid contained between concentric rotating cylinders has been investigated and it has been shown that, when only the inner cylinder rotates, the flow becomes unstable when a certain Reynolds number of the flow is exceeded. When the outer cylinder only is rotated, the flow is stable so far as disturbances of the type produced in the former case are concerned, but provided the Reynolds number of the flow exceeds a certain value, turbulence sets in. The object of the present experiments was partly to measure the torque reaction between two cylinders in the two cases in order to find the effect of centrifugal force on the turbulence, and partly to find the critical Reynolds numbers for the transition from stream-line to turbulent flow. The apparatus is shown diagrammatically in fig. 1.


Author(s):  
B. J. Kachoyan ◽  
P. J. Blennerhassett

AbstractThe Dean problem of pressure-driven flow between finite-length concentric cylinders is considered. The outer cylinder is at rest and the small-gap approximation is used. In a similar procedure to that of Blennerhassett and Hall [8] in the context of Taylor vortices, special end conditions are imposed in which the ends of the cylinder move with the mean flow, allowing the use of a perturbation analysis from a known basic flow. Difficulties specific to Dean flow (and more generally to non-Taylor-vortex flow) require the use of a parameter α which measures the relative strengths of the velocities due to rotation and the pressure gradient, to trace the solution from Taylor to Dean flow. Asymptotic expansions are derived for axial wavenumbers at a given Taylor number. The calculation of critical Taylor number for a given cylinder height is then carried out. Corresponding stream-function contours clearly show features not evident in infinite flow.


1979 ◽  
Vol 94 (3) ◽  
pp. 453-463 ◽  
Author(s):  
A. Barcilon ◽  
J. Brindley ◽  
M. Lessen ◽  
F. R. Mobbs

We report on a set of turbulent flow experiments of the Taylor type in which the fluid is contained between a rotating inner circular cylinder and a fixed concentric outer cylinder, focusing our attention on very large Taylor number values, i.e. \[ 10^3 \leqslant T/T_c \leqslant 10^5, \] where Tc is the critical value of the Taylor number T for onset of Taylor vortices. At such large values of T, the turbulent vortex flow structure is similar to the one observed when T – Tc is small and this structure is apparently insensitive to further increases in T. These flows are characterized by two widely separated length scales: the scale of the gap width which characterizes the Taylor vortex flow and a much smaller scale which is made visible by streaks in the form of a ‘herring-bone’-like pattern visible at the walls. These are conjectured to be Görtler vortices which arise as a result of centrifugal instability in the wall boundary layers. Ideas of marginal instability by which we postulate that both the Taylor and Görtler vortex structures are marginally unstable on their own scale seem to provide good quantitative agreement between predicted and observed Görtler vortex spacings.


Sign in / Sign up

Export Citation Format

Share Document