scholarly journals Discussion: “Axial Turbine Performance Evaluation. Parts A and B” (Balje´, O. E., and Binsley, R. L., 1968, ASME J. Eng. Power, 90, pp. 341–348 and pp. 349–359)

1968 ◽  
Vol 90 (4) ◽  
pp. 359-360
Author(s):  
W. K. Bodger
1968 ◽  
Vol 90 (4) ◽  
pp. 349-359 ◽  
Author(s):  
O. E. Balje´ ◽  
R. L. Binsley

The maximum obtainable efficiency and associated geometry have been calculated based on the use of generalized loss correlations from Part A and are presented for full and partial admission turbines over a wide range of specific speeds. The calculated effects of varying values of Reynolds number, tip clearance, and trailing edge thickness on turbine performance are presented. Because of the anticipated difficulty in fabricating some of the optimum geometries calculated, the effects of using nonoptimum values of geometric parameters on attainable efficiency have also been investigated. The derating factor for machine Reynolds number is shown to be a strong function of specific speed, varying from 0.96 at a specific speed of 100, to 0.6 at a specific speed of 3, when Reynolds number is 105 compared to a reference value of 106. The derating factor for tip clearance is shown to be similar to what would be expected if the clearance area were considered as a leakage area. The use of blade heights, blade numbers, rotor exit angles, and degrees of reaction varying from the optimum by 25 percent produce maximum derating factors of 0.99, 0.98, 0.985, and 0.97, respectively, when compared to full optimum values.


2014 ◽  
Vol 136 (11) ◽  
Author(s):  
A. St. George ◽  
R. Driscoll ◽  
E. Gutmark ◽  
D. Munday

The performance of an axial turbine is studied under close-coupled, out-of-phase, multiple-admission pulsed air flow to approximate turbine behavior under pulsed detonation inflow. The operating range has been mapped for four frequencies and compared using multiple averaging approaches and five formulations of efficiency. Steady performance data for full and partial admission are presented as a basis for comparison to the pulsed flow cases. While time-averaged methods are found to be unsuitable, mass-averaged, work-averaged, and integrated instantaneous methods yield physically meaningful values and comparable trends for all frequencies. Peak work-averaged efficiency for pulsed flow cases is within 5% of the peak steady, full admission values for all frequencies, in contrast to the roughly 15–20% performance deficit experienced under steady, 50% partial admission conditions. Turbine efficiency is found to be a strong function of corrected flow rate and mass-averaged rotor incidence angle, but only weakly dependent on frequency.


Author(s):  
A. St. George ◽  
R. Driscoll ◽  
E. Gutmark ◽  
D. Munday

The performance of an axial turbine is studied under close-coupled, out-of-phase, multiple-admission pulsed air flow to approximate turbine behavior under pulsed detonation inflow. The operating range has been mapped for four frequencies and compared using multiple averaging approaches and five formulations of efficiency. Steady performance data for full and partial admission are presented as a basis for comparison to the pulsed flow cases. While time-averaged methods are found to be unsuitable, mass-averaged, work-averaged, and integrated instantaneous methods yield physically meaningful values and comparable trends for all frequencies. Peak work-averaged efficiency for pulsed flow cases is within 5% of the peak steady, full admission values for all frequencies, in contrast to the roughly 15–20% performance deficit experienced under steady, 50% partial admission conditions. Turbine efficiency is found to be a strong function of corrected flow rate and mass-averaged rotor incidence angle, but only weakly dependent on frequency.


Sign in / Sign up

Export Citation Format

Share Document