Electric Hydraulic Governor Control for Industrial and Commercial Gas Turbine Use

1966 ◽  
Vol 88 (3) ◽  
pp. 243-250
Author(s):  
N. G. Alvis

This paper covers the latest applications of an electric hydraulic governor control for industrial-commercial gas turbine use. Gas turbines are now being used for mechanical loads, electrical power generation, and ship propulsion. Many of these applications require some degree of automatic operation and operation with other types of prime movers. The electric governor has aided this new concept in gas turbine application. Several typical installations are discussed, including both industrial and commercial use.

2007 ◽  
Vol 129 (04) ◽  
pp. 34-37 ◽  
Author(s):  
Lee S. Langston

This article illustrates capabilities of gas turbines to be able to work in extremely elevated temperatures. The turbine airfoils in the new F135 jet engine that powers the Joint Strike Fighter (JSF) Lightning II are capable of operating at these extreme temperatures. The F135 gas turbine is the first production jet engine in this new 3,600°F class, designed to withstand these highest, record-breaking turbine inlet temperatures. The JSF engine is just one product in the $3.7 billion military gas turbine market, which includes jet engine production for the world’s fighter aircraft military cargo, transport, refuelling, and special-purpose aircraft. The article also discusses the features of H Class, which is the largest electric power gas turbine that has been interpreted as an abbreviation for humongous. Non-aviation gas turbines consist of electrical power generation, mechanical drive, and marine. The largest segment of that market by far is electrical power generation, in simple cycle, combined cycle, and cogeneration. Forecast International predicts significant growth in coming years in demand for gas turbine electrical power generation, rising from $8.6 billion in 2006 to a projected $13.5 billion in 2008, a 60 percent increase.


Author(s):  
J R Bolter

Sir Charles Parsons died some three years after the author was born. In this paper the author looks back at the pioneering work of Parsons in the field of power generation. It shows how he was able to increase output of the steam turbine generator from 7.5 kW in 1884 to 50000 kW in 1930 while increasing efficiency from 1.6 to 36 per cent, and relates these achievements to the current state of the art. Blading design, rotor construction and other aspects of turbine engineering are considered. The conclusion is that Parsons and his associates charted the course which manufacturers and utilities throughout the world have continued to follow, although increasingly sophisticated design and analytical methods have succeeded the intuitive approach of Parsons. His constant search for improved efficiency was and is highly relevant to today's concern for the environment. Finally, although it did not become a practical proposition in his lifetime, the paper reviews Parsons' vision of, and continuing interest in, the gas turbine, first mentioned in his 1884 patents.


1970 ◽  
Author(s):  
Victor de Biasi ◽  
J. W. Sawyer

Reviews the world trends since 1966 in the application of gas turbines on both naval and merchant ships. States that the total horsepower increased from 1.9 to 5.8 million in a four-year period, with some 5.5 million horsepower in propulsion. Indicates a definite growth in commercial use from 100,000 to 390,000 hp. Attributes the significant gain in total power due primarily to the availability of proven engines, that are competitive with other prime movers, in the 20,000 hp and above size. Predicts significant increase in use of the marine gas turbine for naval as well as merchant ships when the overall ship, its utilization and supporting shore facilities are considered jointly.


Author(s):  
Colin F. McDonald

In long–term U.S. energy planning three major factors are paramount, (1) environmental considerations will play a major role in power plant design, (2) alternate (and cleaner burning) transportation fuels must be introduced to wean the country from dependence on imported oil, and (3) increasing reliance will be placed on indigenous resources, namely uranium and coal. It will likely take several decades for the above goals to be implemented on a large scale, and will surely necessitate the utilization of advanced technologies. A proposed advanced version of the modular helium reactor (MHR) has bi–modal operating capability in that it can be used for power generation, and the emission–free production of clean–burning fuels to meet transportation needs. The advanced hybrid MHR plant concept utilizes a direct cycle helium nuclear gas turbine for electrical power generation (with an efficiency potential of 50%), and in addition embodies an intermediate heat transport loop for high temperature process heat needed for the emission–free conversion of coal into future cleaner burning transportation fuels, namely methanol, synthetic natural gas, or hydrogen. The high grade sensible reject heat from both the prime–mover and process heat loop is ideally suited for desalination, and thus gives the plant capability for generating three revenue streams. This paper highlights an advanced very high temperature hybrid plant concept, and discusses the enabling technologies necessary to make such an energy complex a reality, perhaps in the first decade of the 21st century. Such a power generating and fuel production facility would be in concert with improved clean air goals, and the national security and economic advantages of making U.S. power and fuel supplies dependent only on indigenous resources.


Author(s):  
Alexander Lifson ◽  
Anthony J. Smalley ◽  
George H. Quentin ◽  
Joseph P. Zanyk

This paper describes existing, developing, and needed methods for detection, identification, and diagnosis of problems in combustion turbines. The use of combustion turbines for electrical power generation is growing, and advanced models of large industrial turbines are now starting to enter service. In view of the harsh operating conditions and severe service to which these new turbines will be exposed, this paper evaluates sensors and signal analysis methods to detect and diagnose the problems which may surface in operation. Generic problems which have been observed in combustion turbine installations in the recent past are identified, and methods for detecting these problems, quantifying them, and isolating their causes are analyzed.


Author(s):  
F. S. Bhinder ◽  
Munzer S. Y. Ebaid ◽  
Moh’d Yazid F. Mustafa ◽  
Raj K. Calay ◽  
Mohammed H. Kailani

Large scale electrical power generation faces two serious problems: (i) energy conservation; and (ii) protection of the environment. High temperatures fuel cells have the potential to deal with both problems. The heat rejected by the fuel cell that would otherwise be wasted may be recovered to power a gas turbine in order to improve the energy conversion efficiency as well as power output of the combined fuel cell-gas turbine power plant. The added advantage of this approach would be to reduce thermal loading and the emission of greenhouse gases per MW electrical power generated. Serious research is being carried out worldwide to commercialise the fuel cell nevertheless there is still ample scope for studying the application of high temperature fuel cells in combination with the gas turbine for large scale electrical power generation. This paper presents the results of a parametric study of the fuel cell-gas turbine power plant to generate electricity. The paper should be of considerable interest to the designers and applications engineers working in power generation industry and other public utilities. The authors hope that the paper would lead to a stimulating discussion.


Sign in / Sign up

Export Citation Format

Share Document