scholarly journals Sensitivity Analysis of 3-RPR Planar Parallel Manipulators

2009 ◽  
Vol 131 (12) ◽  
Author(s):  
Stéphane Caro ◽  
Nicolas Binaud ◽  
Philippe Wenger

This paper deals with the sensitivity analysis of 3-RPR planar parallel manipulators (PPMs). First, the sensitivity coefficients of the pose of the manipulator moving platform to variations in the geometric parameters and in the actuated variables are expressed algebraically. Moreover, two aggregate sensitivity indices are determined, one related to the orientation of the manipulator moving platform and another one related to its position. Then, a methodology is proposed to compare 3-RPR PPMs with regard to their dexterity, workspace size and sensitivity. Finally, the sensitivity of a 3-RPR PPM is analyzed in detail and four 3-RPR PPMs are compared as illustrative examples.

Author(s):  
Ste´phane Caro ◽  
Nicolas Binaud ◽  
Philippe Wenger

This paper deals with the sensitivity analysis of planar parallel manipulators. A methodology is introduced to derive the sensitivity coefficients by means of the study of 3-RPR manipulators. As a matter of fact, the sensitivity coefficients of the pose of its moving platform to variations in the geometric parameters are expressed algebraically, the variations being defined both in Polar and Cartesian coordinates. The dexterity of the manipulator is also studied by means of the conditioning number of its normalized kinematic Jacobian matrix. As an illustrative example, the sensitivity of a symmetrical planar parallel manipulator is analyzed in detail. Finally, the accuracy of the manipulator is compared with its dexterity.


Robotica ◽  
2019 ◽  
Vol 38 (8) ◽  
pp. 1463-1477 ◽  
Author(s):  
Houssem Saafi ◽  
Houssein Lamine

SUMMARYThis paper investigates a comparative kinematic analysis between nonredundant and redundant 2-Degree Of Freedom parallel manipulators. The nonredundant manipulator is based on the Five-Bar mechanism, and the redundant one is a 3-RRR planar parallel manipulator. This study is aimed to select the best structure for a haptic application. This latter requires a mechanism with a desired workspace of 10 cm × 10 cm and an admissible force of 5 N in all directions. The analysis criteria are the accuracy of the forward kinematic model and the required actuator torques. Thereby, the geometric parameters of the two structures are optimized in order to satisfy the required workspace such that parallel singularities are overcome. The analysis showed that the nonredundant optimally designed manipulator is more suitable for the haptic application.


2016 ◽  
Vol 78 (5-2) ◽  
Author(s):  
Ilyani Akmar Abu Bakar ◽  
Jurina Jaafar ◽  
Haryati Awang ◽  
Nurathirah Alyun Shamsham Nahar

A sensitivity analysis is performed to determine the key uncertain geometric parameters that influence the mechanical response of a mining dragline joint subjected to large dynamic loading. An alternative design is modeled where the welded of the lacing members are attached on the sleeve structure rather than welded to the main chord directly using ABAQUS. Based on the simulated values, the Sobol's variance-based method which consists of first-order and total-effect sensitivity indices is presented. The sensitivity of four uncertain geometric parameters on the mechanical responses are investigated; i.e. thickness of sleeve, thickness of bracing members, weld fillet and eccentricity. To conclude, it is observed that the thickness of sleeve is the most dominant uncertain geometric parameter with respect to the specified mechanical responses.    


Author(s):  
Xianwen Kong

Despite recent advances in the type synthesis of parallel manipulators with a mono-operation mode, such as translational parallel manipulators and spherical parallel manipulators, the type synthesis of parallel manipulators with multiple operation modes is still an open issue. This paper deals with the type synthesis of 3-DOF parallel manipulators with both planar and translational operation modes. The type synthesis of planar parallel manipulators, which refer to parallel manipulators in which the moving platform undergoes planar motion, is first dealt with using the virtual chain approach. Then, the types of 3-DOF parallel manipulators with both planar and translational operation modes are obtained. This work can be extended to the type synthesis of other classes of parallel manipulators with multiple operation modes.


2013 ◽  
Vol 5 (4) ◽  
Author(s):  
Xianwen Kong

Type synthesis of multimode parallel manipulators (PMs) (also parallel manipulators with multiple operation modes) is an open issue in the research on reconfigurable mechanisms and robots. This paper deals with the type synthesis of 3-DOF (degree-of-freedom) parallel manipulators with both a planar operation mode and a spatial translational operation mode. The type synthesis of planar parallel manipulators, which refer to parallel manipulators in which the moving platform undergoes planar motion, is first dealt with using the virtual-chain approach. Types of planar parallel manipulators, including those involving Bennett compositional unit (CU), are obtained. Then, the types of 3-DOF parallel manipulators with both a planar operation mode and a translational operation mode are obtained. This paper focuses on 3-DOF parallel manipulators composed of only revolute joints. This work contributes to the type synthesis of parallel manipulators and can be extended to the type synthesis of other classes of multimode parallel manipulators.


Algorithms ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 162
Author(s):  
Marion Gödel ◽  
Rainer Fischer ◽  
Gerta Köster

Microscopic crowd simulation can help to enhance the safety of pedestrians in situations that range from museum visits to music festivals. To obtain a useful prediction, the input parameters must be chosen carefully. In many cases, a lack of knowledge or limited measurement accuracy add uncertainty to the input. In addition, for meaningful parameter studies, we first need to identify the most influential parameters of our parametric computer models. The field of uncertainty quantification offers standardized and fully automatized methods that we believe to be beneficial for pedestrian dynamics. In addition, many methods come at a comparatively low cost, even for computationally expensive problems. This allows for their application to larger scenarios. We aim to identify and adapt fitting methods to microscopic crowd simulation in order to explore their potential in pedestrian dynamics. In this work, we first perform a variance-based sensitivity analysis using Sobol’ indices and then crosscheck the results by a derivative-based measure, the activity scores. We apply both methods to a typical scenario in crowd simulation, a bottleneck. Because constrictions can lead to high crowd densities and delays in evacuations, several experiments and simulation studies have been conducted for this setting. We show qualitative agreement between the results of both methods. Additionally, we identify a one-dimensional subspace in the input parameter space and discuss its impact on the simulation. Moreover, we analyze and interpret the sensitivity indices with respect to the bottleneck scenario.


Sign in / Sign up

Export Citation Format

Share Document