MODELLING OF MINING DRAGLINE JOINT: A SENSITIVITY ANALYSIS WITH SOBOL’S VARIANCE-BASED METHOD

2016 ◽  
Vol 78 (5-2) ◽  
Author(s):  
Ilyani Akmar Abu Bakar ◽  
Jurina Jaafar ◽  
Haryati Awang ◽  
Nurathirah Alyun Shamsham Nahar

A sensitivity analysis is performed to determine the key uncertain geometric parameters that influence the mechanical response of a mining dragline joint subjected to large dynamic loading. An alternative design is modeled where the welded of the lacing members are attached on the sleeve structure rather than welded to the main chord directly using ABAQUS. Based on the simulated values, the Sobol's variance-based method which consists of first-order and total-effect sensitivity indices is presented. The sensitivity of four uncertain geometric parameters on the mechanical responses are investigated; i.e. thickness of sleeve, thickness of bracing members, weld fillet and eccentricity. To conclude, it is observed that the thickness of sleeve is the most dominant uncertain geometric parameter with respect to the specified mechanical responses.    

2009 ◽  
Vol 131 (12) ◽  
Author(s):  
Stéphane Caro ◽  
Nicolas Binaud ◽  
Philippe Wenger

This paper deals with the sensitivity analysis of 3-RPR planar parallel manipulators (PPMs). First, the sensitivity coefficients of the pose of the manipulator moving platform to variations in the geometric parameters and in the actuated variables are expressed algebraically. Moreover, two aggregate sensitivity indices are determined, one related to the orientation of the manipulator moving platform and another one related to its position. Then, a methodology is proposed to compare 3-RPR PPMs with regard to their dexterity, workspace size and sensitivity. Finally, the sensitivity of a 3-RPR PPM is analyzed in detail and four 3-RPR PPMs are compared as illustrative examples.


Mathematics ◽  
2021 ◽  
Vol 9 (19) ◽  
pp. 2425
Author(s):  
Zdeněk Kala

This article presents new sensitivity measures in reliability-oriented global sensitivity analysis. The obtained results show that the contrast and the newly proposed sensitivity measures (entropy and two others) effectively describe the influence of input random variables on the probability of failure Pf. The contrast sensitivity measure builds on Sobol, using the variance of the binary outcome as either a success (0) or a failure (1). In Bernoulli distribution, variance Pf(1 − Pf) and discrete entropy—Pfln(Pf) − (1 − Pf)ln(1 − Pf) are similar to dome functions. By replacing the variance with discrete entropy, a new alternative sensitivity measure is obtained, and then two additional new alternative measures are derived. It is shown that the desired property of all the measures is a dome shape; the rise is not important. Although the decomposition of sensitivity indices with alternative measures is not proven, the case studies suggest a rationale structure of all the indices in the sensitivity analysis of small Pf. The sensitivity ranking of input variables based on the total indices is approximately the same, but the proportions of the first-order and the higher-order indices are very different. Discrete entropy gives significantly higher proportions of first-order sensitivity indices than the other sensitivity measures, presenting entropy as an interesting new sensitivity measure of engineering reliability.


2020 ◽  
Author(s):  
Sabine M. Spiessl ◽  
Sergei Kucherenko

<p>Probabilistic methods of higher order sensitivity analysis provide a possibility for identifying parameter interactions by means of sensitivity indices. Better understanding of parameter interactions may help to better quantify uncertainties of repository models, which can behave in a highly nonlinear, non-monotonic or even discontinuous manner. Sensitivity indices can efficiently be estimated by the Random-Sampling High Dimensional Model Representation (RS-HDMR) metamodeling approach. This approach is based on truncating the ANOVA-HDMR expansions up to the second order, while the truncated terms are then approximated by orthonormal polynomials. By design, the sensitivity index of total order (SIT) in this method is approximated as the sum of the indices of first order (SI1’s) plus all corresponding indices of second order (SI2’s) for a considered parameter. RS-HDMR belongs to a wider class of methods known as polynomial chaos expansion (PCE). PCE methods are based on Wiener’s homogeneous chaos theory published in 1938. It is a widely used approach in metamodeling. Usually only a few terms are relevant in the PCE structure. The Bayesian Sparse PCE method (BSPCE) makes use of sparse PCE. Using BSPCE, SI1 and SIT can be estimated. In this work we used the SobolGSA software [1] which contains both the RS-HDMR and BSPCE methods.</p><p>We have analysed the sensitivities of a model for a generic LILW repository in a salt mine using both the RS-HDMR and the BSPCE approach. The model includes a barrier in the near field which is chemically dissolved (corroded) over time by magnesium-containing brine, resulting in a sudden significant change of the model behaviour and usually a rise of the radiation exposure. We investigated the model with two sets of input parameters: one with 6 parameters and one with 5 additional ones (LILW6 and LILW11 models, respectively). For the time-dependent analysis, 31 time points were used.</p><p>The SI1 indices calculated with both approaches agree well with those obtained from the well-established and reliable first-order algorithm EASI [2] in most investigations. The SIT indices obtained from the BSPCE method seem to increase with the number of simulations used to build the metamodel. The SIT time curves obtained from the RS-HDMR approach with optimal choice of the polynomial coefficients agree well with the ones from the BSPCE approach only for relatively low numbers of simulations. As, in contrast to RS-HDMR, the BSPCE approach takes account of all orders of interaction, this may be a hint for the existence of third- or higher-order effects.</p><p><strong>Acknowledgements</strong></p><p>The work was financed by the German Federal Ministry for Economic Affairs and Energy (BMWi). We would also like to thank Dirk-A. Becker for his constructive feedback.</p><p><strong>References</strong></p><p>[1]         S. M. Spiessl, S. Kucherenko, D.-A. Becker, O. Zaccheus, Higher-order sensitivity analysis of a final repository model with discontinuous behaviour. Reliability Engineering and System Safety, doi: https://doi.org/10.1016/j.ress.2018.12.004, (2018).</p><p>[2]          E. Plischke, An effective algorithm for computing global sensitivity indices (EASI). Reliability Engineering and System Safety, 95: 354–360, (2010).</p>


2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
S. Razmyan ◽  
F. Hosseinzadeh Lotfi

Discriminant analysis (DA) is used for the measurement of estimates of a discriminant function by minimizing their group misclassifications to predict group membership of newly sampled data. A major source of misclassification in DA is due to the overlapping of groups. The uncertainty in the input variables and model parameters needs to be properly characterized in decision making. This study combines DEA-DA with a sensitivity analysis approach to an assessment of the influence of banks’ variables on the overall variance in overlap in a DA in order to determine which variables are most significant. A Monte-Carlo-based sensitivity analysis is considered for computing the set of first-order sensitivity indices of the variables to estimate the contribution of each uncertain variable. The results show that the uncertainties in the loans granted and different deposit variables are more significant than uncertainties in other banks’ variables in decision making.


Algorithms ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 162
Author(s):  
Marion Gödel ◽  
Rainer Fischer ◽  
Gerta Köster

Microscopic crowd simulation can help to enhance the safety of pedestrians in situations that range from museum visits to music festivals. To obtain a useful prediction, the input parameters must be chosen carefully. In many cases, a lack of knowledge or limited measurement accuracy add uncertainty to the input. In addition, for meaningful parameter studies, we first need to identify the most influential parameters of our parametric computer models. The field of uncertainty quantification offers standardized and fully automatized methods that we believe to be beneficial for pedestrian dynamics. In addition, many methods come at a comparatively low cost, even for computationally expensive problems. This allows for their application to larger scenarios. We aim to identify and adapt fitting methods to microscopic crowd simulation in order to explore their potential in pedestrian dynamics. In this work, we first perform a variance-based sensitivity analysis using Sobol’ indices and then crosscheck the results by a derivative-based measure, the activity scores. We apply both methods to a typical scenario in crowd simulation, a bottleneck. Because constrictions can lead to high crowd densities and delays in evacuations, several experiments and simulation studies have been conducted for this setting. We show qualitative agreement between the results of both methods. Additionally, we identify a one-dimensional subspace in the input parameter space and discuss its impact on the simulation. Moreover, we analyze and interpret the sensitivity indices with respect to the bottleneck scenario.


Processes ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1252
Author(s):  
Hadar Elyashiv ◽  
Revital Bookman ◽  
Lennart Siemann ◽  
Uri ten Brink ◽  
Katrin Huhn

The Discrete Element Method has been widely used to simulate geo-materials due to time and scale limitations met in the field and laboratories. While cohesionless geo-materials were the focus of many previous studies, the deformation of cohesive geo-materials in 3D remained poorly characterized. Here, we aimed to generate a range of numerical ‘sediments’, assess their mechanical response to stress and compare their response with laboratory tests, focusing on differences between the micro- and macro-material properties. We simulated two endmembers—clay (cohesive) and sand (cohesionless). The materials were tested in a 3D triaxial numerical setup, under different simulated burial stresses and consolidation states. Variations in particle contact or individual bond strengths generate first order influence on the stress–strain response, i.e., a different deformation style of the numerical sand or clay. Increased burial depth generates a second order influence, elevating peak shear strength. Loose and dense consolidation states generate a third order influence of the endmember level. The results replicate a range of sediment compositions, empirical behaviors and conditions. We propose a procedure to characterize sediments numerically. The numerical ‘sediments’ can be applied to simulate processes in sediments exhibiting variations in strength due to post-seismic consolidation, bioturbation or variations in sedimentation rates.


Author(s):  
Guang Dong ◽  
Zheng-Dong Ma ◽  
Gregory Hulbert ◽  
Noboru Kikuchi

The topology optimization method is extended for the optimization of geometrically nonlinear, time-dependent multibody dynamics systems undergoing nonlinear responses. In particular, this paper focuses on sensitivity analysis methods for topology optimization of general multibody dynamics systems, which include large displacements and rotations and dynamic loading. The generalized-α method is employed to solve the multibody dynamics system equations of motion. The developed time integration incorporated sensitivity analysis method is based on a linear approximation of two consecutive time steps, such that the generalized-α method is only applied once in the time integration of the equations of motion. This approach significantly reduces the computational costs associated with sensitivity analysis. To show the effectiveness of the developed procedures, topology optimization of a ground structure embedded in a planar multibody dynamics system under dynamic loading is presented.


2014 ◽  
Vol 986-987 ◽  
pp. 377-382 ◽  
Author(s):  
Hui Min Gao ◽  
Jian Min Zhang ◽  
Chen Xi Wu

Heuristic methods by first order sensitivity analysis are often used to determine location of capacitors of distribution power system. The selected nodes by first order sensitivity analysis often have virtual high by first order sensitivities, which could not obtain the optimal results. This paper presents an effective method to optimally determine the location and capacities of capacitors of distribution systems, based on an innovative approach by the second order sensitivity analysis and hierarchical clustering. The approach determines the location by the second order sensitivity analysis. Comparing with the traditional method, the new method considers the nonlinear factor of power flow equation and the impact of the latter selected compensation nodes on the previously selected compensation location. This method is tested on a 28-bus distribution system. Digital simulation results show that the reactive power optimization plan with the proposed method is more economic while maintaining the same level of effectiveness.


Sign in / Sign up

Export Citation Format

Share Document