Flow Field Analysis in Expanding Healthy and Emphysematous Alveolar Models Using Particle Image Velocimetry

2010 ◽  
Vol 132 (2) ◽  
Author(s):  
Jessica M. Oakes ◽  
Steven Day ◽  
Steven J. Weinstein ◽  
Risa J. Robinson

Particulates that deposit in the acinus region of the lung have the potential to migrate through the alveolar wall and into the blood stream. However, the fluid mechanics governing particle transport to the alveolar wall are not well understood. Many physiological conditions are suspected to influence particle deposition including morphometry of the acinus, expansion and contraction of the alveolar walls, lung heterogeneities, and breathing patterns. Some studies suggest that the recirculation zones trap aerosol particles and enhance particle deposition by increasing their residence time in the region. However, particle trapping could also hinder aerosol particle deposition by moving the aerosol particle further from the wall. Studies that suggest such flow behavior have not been completed on realistic, nonsymmetric, three-dimensional, expanding alveolated geometry using realistic breathing curves. Furthermore, little attention has been paid to emphysemic geometries and how pathophysiological alterations effect deposition. In this study, fluid flow was examined in three-dimensional, expanding, healthy, and emphysemic alveolar sac model geometries using particle image velocimetry under realistic breathing conditions. Penetration depth of the tidal air was determined from the experimental fluid pathlines. Aerosol particle deposition was estimated by simple superposition of Brownian diffusion and sedimentation on the convected particle displacement for particles diameters of 100–750 nm. This study (1) confirmed that recirculation does not exist in the most distal alveolar regions of the lung under normal breathing conditions, (2) concluded that air entering the alveolar sac is convected closer to the alveolar wall in healthy compared with emphysematous lungs, and (3) demonstrated that particle deposition is smaller in emphysematous compared with healthy lungs.

2010 ◽  
Vol 43 (6) ◽  
pp. 1039-1047 ◽  
Author(s):  
Emily J. Berg ◽  
Jessica L. Weisman ◽  
Michael J. Oldham ◽  
Risa J. Robinson

2018 ◽  
Vol 140 (3) ◽  
Author(s):  
James Schock ◽  
Jason Dahl

Two methods are investigated to simultaneously obtain both three-dimensional (3D) velocity field and free surface elevations (FSEs) measurements near a surface piercing foil, while limiting the equipment. The combined velocity field and FSE measurements are obtained specifically for the validation of numerical methods requiring simultaneous field data and free surface measurements for a slender body shape. Both methods use stereo particle image velocimetry (SPIV) to measure three component velocities in the flow field and both methods use an off the shelf digital camera with a laser intersection line to measure FSEs. The first method is performed using a vertical laser sheet oriented parallel to the foil chord line. Through repetition of experiments with repositioning of the laser, a statistical representation of the three-dimensional flow field and surface elevations is obtained. The second method orients the vertical laser sheet such that the foil chord line is orthogonal to the laser sheet. A single experiment is performed with this method to measure the three-dimensional three component (3D3C) flow field and free surface, assuming steady flow conditions, such that the time dimension is used to expand the flow field in 3D space. The two methods are compared using dynamic mode decomposition and found to be comparable in the primary mode. Utilizing these methods produces results that are acceptable for use in numerical methods verification, at a fraction of the capital and computing cost associated with two plane or tomographic particle image velocimetry (PIV).


2012 ◽  
Vol 9 (77) ◽  
pp. 3378-3386 ◽  
Author(s):  
Richard J. Bomphrey ◽  
Per Henningsson ◽  
Dirk Michaelis ◽  
David Hollis

Aerodynamic structures generated by animals in flight are unstable and complex. Recent progress in quantitative flow visualization has advanced our understanding of animal aerodynamics, but measurements have hitherto been limited to flow velocities at a plane through the wake. We applied an emergent, high-speed, volumetric fluid imaging technique (tomographic particle image velocimetry) to examine segments of the wake of desert locusts, capturing fully three-dimensional instantaneous flow fields. We used those flow fields to characterize the aerodynamic footprint in unprecedented detail and revealed previously unseen wake elements that would have gone undetected by two-dimensional or stereo-imaging technology. Vortex iso-surface topographies show the spatio-temporal signature of aerodynamic force generation manifest in the wake of locusts, and expose the extent to which animal wakes can deform, potentially leading to unreliable calculations of lift and thrust when using conventional diagnostic methods. We discuss implications for experimental design and analysis as volumetric flow imaging becomes more widespread.


Author(s):  
Wael Fairouz Saleh ◽  
Ibrahim Galal Hassan

The discharge of two-phase flow from a stratified region through single or multiple branches is an important process in many industrial applications including the pumping of fluid from storage tanks, shell-and-tube heat exchangers, and the fluid flow through small breaks in cooling channels of nuclear reactors during loss-of-coolant accidents (LOCA). Knowledge of the flow phenomena involved along with the quality and mass flow rate of the discharging stream(s) is necessary to adequately predict the different phenomena associated with the process. Particle Image Velocimetry (PIV) in three dimension was used to provide detailed measurements of the flow patterns involving distributions of mean velocity, vorticity field, and flow structure. The experimental investigation was carried out to simulate two phase discharge from a stratified region through branches located on a semi-circular wall configuration during LOCA scenarios. The semi-circular test section is in close dimensional resemblance with that of a CANDU header-feeder system, with branches mounted at orientation angles of zero, 45 and 90 degrees from the horizontal. The experimental data for the phase development (mean velocity, flow structure, etc.) was done during single discharge through the bottom branch from an air/water stratified region over a three selected Froude numbers. These measurements were used to describe the effect of outlet flow conditions on phase redistribution in headers and understand the entrainment phenomena.


Sign in / Sign up

Export Citation Format

Share Document