scholarly journals Simultaneous Measurement of Free Surface Elevation and Three-Component Velocity Field Around a Translating Surface-Piercing Foil

2018 ◽  
Vol 140 (3) ◽  
Author(s):  
James Schock ◽  
Jason Dahl

Two methods are investigated to simultaneously obtain both three-dimensional (3D) velocity field and free surface elevations (FSEs) measurements near a surface piercing foil, while limiting the equipment. The combined velocity field and FSE measurements are obtained specifically for the validation of numerical methods requiring simultaneous field data and free surface measurements for a slender body shape. Both methods use stereo particle image velocimetry (SPIV) to measure three component velocities in the flow field and both methods use an off the shelf digital camera with a laser intersection line to measure FSEs. The first method is performed using a vertical laser sheet oriented parallel to the foil chord line. Through repetition of experiments with repositioning of the laser, a statistical representation of the three-dimensional flow field and surface elevations is obtained. The second method orients the vertical laser sheet such that the foil chord line is orthogonal to the laser sheet. A single experiment is performed with this method to measure the three-dimensional three component (3D3C) flow field and free surface, assuming steady flow conditions, such that the time dimension is used to expand the flow field in 3D space. The two methods are compared using dynamic mode decomposition and found to be comparable in the primary mode. Utilizing these methods produces results that are acceptable for use in numerical methods verification, at a fraction of the capital and computing cost associated with two plane or tomographic particle image velocimetry (PIV).

Author(s):  
Deb Banerjee ◽  
Rick Dehner ◽  
Ahmet Selamet ◽  
Keith Miazgowicz ◽  
Todd Brewer ◽  
...  

Abstract Understanding the velocity field at the inlet of an automotive turbocharger is critical in order to suppress the instabilities encountered by the compressor, extend its map and improve the impeller design. In the present study, two-dimensional particle image velocimetry experiments are carried out on a turbocharger compressor without any recirculating channel to investigate the planar flow structures on a cross-sectional plane right in front of the inducer at a rotational speed of 80 krpm. The objective of the study is to investigate the flow field in front of a compressor blade passage and quantify the velocity distributions along the blade span for different mass flow rates ranging from choke (77 g/s) to deep surge (13.6 g/s). It is observed that the flow field does not change substantially from choke to about 55 g/s, where flow reversal is known to start at this speed from earlier measurements. While the tangential velocity is less than 8 m/s, the radial velocity increases along the span to 17–20 m/s near the tip at high flow rates (55–77 g/s). As the mass flow rate is reduced below 55 g/s, the radial component starts decreasing and the tangential velocity increases rapidly. From about 5 m/s at 55 g/s, the tangential velocity at the blade tip exceeds 50 m/s at 50 g/s and reaches a maximum of about 135 m/s near surge. These time-averaged distributions are similar for different angular locations in front of the blade passage and do not exhibit any substantial azimuthal variation.


1992 ◽  
Vol 114 (3) ◽  
pp. 504-509 ◽  
Author(s):  
P. J. Bryanston-Cross ◽  
C. E. Towers ◽  
T. R. Judge ◽  
D. P. Towers ◽  
S. P. Harasgama ◽  
...  

A series of experiments have been performed to demonstrate the application of Particle Image Velocimetry (PIV) to turbomachinery flows. The tests were performed at transonic speeds on a fully annular engine size turbine nozzle guide vane. The vane cascade was installed in a short-duration Isentropic Light Piston Cascade (ILPC) test facility operating with high inlet turbulence levels. The technique has been shown to map the whole flow field with a resolution of 0.5 mm. The quality of the results obtained is not significantly affected by local turbulence rates. The accuracy of the measurements is put at around 4 percent of absolute velocity and is limited by the quality of the image on the film plane. The velocities derived from the PIV images have been compared with predictions from a three-dimensional viscous numerical calculation. It is shown that the experimental and predicted results are in good agreement. It is considered that this technique has considerable potential in application to turbomachinery flow field diagnostics.


Author(s):  
Benjamin H. Timmins ◽  
Barton L. Smith ◽  
Pavlos P. Vlachos

A method to estimate the uncertainty of each vector in Particle Image Velocimetry measurements by estimating the parameters which contribute to errors in the computed velocity field is discussed. These parameters include particle image diameter, particle density, particle displacement, and velocity gradient. After PIV processing, our code “measures” these parameters and an estimate of the velocity uncertainty is made for each vector in the flow field.


Optics ◽  
2020 ◽  
Vol 1 (1) ◽  
pp. 52-70
Author(s):  
Mohammad Amin Kazemi ◽  
Janet A. W. Elliott ◽  
David S. Nobes

The three-dimensional (3D) flow below the interface of an evaporating liquid at a low pressure is visualized and quantified using scanning particle image velocimetry. The technique presented highlights the use of a single camera and a relatively fast moving laser sheet to image the flow for an application where using more than one camera is difficult. The technique allows collection of the full three-dimensional velocity vector map over the whole liquid volume. The out-of-plane component of the velocity has been determined using two different processing approaches: (i) deriving the full vector from a 3D cross-correlation of the particle volumes and (ii) applying the continuity equation to determine out-of-plane velocities from the calculated in-plane velocity vector fields. The results obtained from both methods showed good agreement with each other. The 3D velocity field reveals the existence of a torus shaped vortex below the evaporating meniscus that was induced by the exposure of the cold liquid to the warmer solid walls. The velocity data also shows that the maximum velocity occurs below the interface, not at the interface which highlights that the observed vortex is not driven by thermocapillary forces that usually govern the flow during evaporation at smaller scales.


2014 ◽  
Vol 496-500 ◽  
pp. 1101-1104
Author(s):  
Jun Feng Gao

Particle image velocimetry was applied to measure the velocity field during the flocculation process under the conditions that the flocs compounded with kaolin and polyaluminium chloride were used as seed particles without any other special seed particle during the flocculation process. The results indicated that the flocs formed in the flocculation process can be used as seed particles to measure the instantaneous velocity maps of the flow field with good performance during the flocculation process by PIV. At the same time, the experimental results proved that PIV can be exploited as a useful tool in the synchronism measurement the velocity field and flocculation processes.


Author(s):  
P. J. Bryanston-Cross ◽  
C. E. Towers ◽  
T. R. Judge ◽  
D. P. Towers ◽  
S. P. Harasgama ◽  
...  

A series of experiments have been performed to demonstrate the application of Particle Image Velocimetry (PIV) to turbomachinery flows. The tests were performed at transonic speeds on a fully annular engine size turbine nozzle guide vane. The vane cascade was installed in a short duration Isentropic Light Piston Cascade (ILPC) test facility operating with high inlet turbulence levels. The technique has been shown to map the whole flow field with a resolution of 0.5 mm. The quality of the results obtained are not significantly affected by local turbulence rates. The accuracy of the measurements is put at around 4% of absolute velocity and is limited by the quality of the image on the film plane. The velocities derived from the PIV images have been compared with predictions from a three-dimensional viscous numerical calculation. It is shown that the experimental and predicted results are in good agreement. It is considered that this technique has considerable potential in application to turbomachinery flow field diagnostics.


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1205
Author(s):  
Ruiqi Wang ◽  
Riqiang Duan ◽  
Haijun Jia

This publication focuses on the experimental validation of film models by comparing constructed and experimental velocity fields based on model and elementary experimental data. The film experiment covers Kapitza numbers Ka = 278.8 and Ka = 4538.6, a Reynolds number range of 1.6–52, and disturbance frequencies of 0, 2, 5, and 7 Hz. Compared to previous publications, the applied methodology has boundary identification procedures that are more refined and provide additional adaptive particle image velocimetry (PIV) method access to synthetic particle images. The experimental method was validated with a comparison with experimental particle image velocimetry and planar laser induced fluorescence (PIV/PLIF) results, Nusselt’s theoretical prediction, and experimental particle tracking velocimetry (PTV) results of flat steady cases, and a good continuity equation reproduction of transient cases proves the method’s fidelity. The velocity fields are reconstructed based on different film flow model velocity profile assumptions such as experimental film thickness, flow rates, and their derivatives, providing a validation method of film model by comparison between reconstructed velocity experimental data and experimental velocity data. The comparison results show that the first-order weighted residual model (WRM) and regularized model (RM) are very similar, although they may fail to predict the velocity field in rapidly changing zones such as the front of the main hump and the first capillary wave troughs.


Sign in / Sign up

Export Citation Format

Share Document