helical flute
Recently Published Documents


TOTAL DOCUMENTS

19
(FIVE YEARS 7)

H-INDEX

2
(FIVE YEARS 1)

2021 ◽  
Vol 164 ◽  
pp. 104419
Author(s):  
Chin-Lung Huang ◽  
Guan-Shing Lee ◽  
Li-Sheng Chang
Keyword(s):  

Author(s):  
Haibin Yu ◽  
Minli Zheng ◽  
Wei Zhang ◽  
Wanying Nie ◽  
Tianchen Bian

Due to the variable pitch angle and helix angle of the irregular tooth end milling cutter, the mass of the integral end milling cutter is eccentric, and the high stability and precision design of the irregular tooth end milling cutter is still a challenge. Aiming at the influence of dynamic balance of irregular tooth end milling cutter which can not be ignored in high-speed milling, the parameterized design of radial section of irregular tooth end milling cutter was carried out. Based on the space transformation law of the centroid of helical flute, a new method for calculating the centroid coordinate of end milling cutter was put forward, and a general mathematical model of eccentricity of integral end milling cutter was given. It was proved that this model could accurately calculate the centroid position and eccentricity of the end milling cutter. The influence of pitch difference angle and helix difference angle on eccentricity of end milling cutter was studied and analyzed. The particle swarm optimization (PSO) algorithm was creatively applied to optimize the helical flute shape of the end milling cutter, the curvature radius of helical flute curve is optimized, so that the centroid coordinate is infinitely close to the origin of coordinate. The number of iterations was set to 200. In the 32nd iteration, the result approached to infinitesimal, the final function converged, and obtained the groove curvature radius of the milling cuter with the smallest eccentricity. The optimized eccentricity of the end milling cutter is infinitesimal, which can make the vibration damping performance of the end milling cutter be fully developed. On the basis of ensuring the same cutting performance, the cutting tool unbalance was effectively reduced and the dynamic performance of milling cutter was further improved.


Author(s):  
Ahmet Dogrusadik ◽  
Candas Aycicek ◽  
Aykut Kentli

Thread tapping is one of the most important machining processes. Although thread tapping is a usual process and has been used for decades, the process still needs improvement for promising materials such as titanium alloys to increase the performance of the process. Titanium alloys are known as difficult-to-cut materials due to their low heat conductivity and elastic modulus. The aim of the work presented in this paper is to optimize the tapping tool primary design parameters for Ti-6Al-4V. The most influential tool design parameters on the process were selected as the rake angle, helical flute angle, chamfer angle, and tool coating. Optimization of the tool design parameters was made by considering the results of the experimental work. Two levels of each parameter were chosen. Taguchi L8 orthogonal array was used as the design of experiment. Tapping tool temperature and tapping torque were determined as the process outputs. According to the results, the optimized tool design parameters were found as 6° rake angle, 12° helical flute angle, 14° chamfer angle, and TiCN coating.


The trend of the materials that are being used for various industrial applications has shown a drastic variation over the decades. Pure metals are replaced by alloys and these alloys in turn are being replaced by composites in most of the present day applications. Fiber reinforced polymer composites (FRPs) extensively used materials and a lot of research is going on for further improvement of properties of these materials. Drilling process is important in assembly of components in manufacturing. In case of FRPs drilling process is a great challenge when compared to that of conventional material because of de-bonding, metric cracking, and fiber pullout. The present work is a study on the effect of torque and thrust force on delamination of Carbon Fiber Reinforced Polymers (CFRP) and Glass Fiber Reinforced Polymers (GFRP) and by drilling process. Experiments are conducted at different feeds, drill diameters and speeds. Image processing approach is used to quantify the drill-induced delamination where helical flute HSS drills of diameters 4mm, 6mm and 8mm are used. Statistical analysis is made to optimize the drill parameters by ANOVA and Taguchi technique. It is observed that at 4mm drill diameter, torque and thrust force are minimum for both CFRP and GFRP. However, the delamination factor is minimum at drill diameter of 6mm in case of GFRP and at 8mm for CFRP


2020 ◽  
Vol 28 ◽  
pp. 136-143 ◽  
Author(s):  
Marc-André Dittrich ◽  
Volker Böß ◽  
Marcel Wichmann ◽  
Berend Denkena

2019 ◽  
Vol 13 (5) ◽  
pp. 599-606
Author(s):  
B. Denkena ◽  
M.-A. Dittrich ◽  
V. Böß ◽  
M. Wichmann ◽  
S. Friebe

2019 ◽  
Vol 2019.68 (0) ◽  
pp. 604
Author(s):  
Hiroshi TANAKA ◽  
Akira JINDOU ◽  
Takayuki MATSUOKA ◽  
Yoshitsugu KAWASE ◽  
Eiji TOMA

2018 ◽  
Vol 178 ◽  
pp. 01002
Author(s):  
Adrian Sorin Faur ◽  
Marcel Sabin Popa ◽  
Bogdan Cornel Luca ◽  
Ioan-Doru Voina ◽  
Dan Bizubac

The shearing of the chips in a blind hole thread presents a particular problem in machining industry. The tap geometry plays an important role in the tool's durability, influencing the forces during the tapping process and also the way in which the chips are evacuated. This paper analyzes the influence of the tap geometry on the cutting of materials such as C45, 42CrMo4 and X5CrNi8. An adequate geometry will extend the tap durability by controlling the chip when the tap reverses while still engaged in the tapping process. It relates to the improvement of a spiral tap drill, which discharges chips towards the shank via a helical flute. The article contains details about the tap geometries and the results obtained in this research. Based on the results obtained in this research, the purpose of this paper was achieved. The tap durability was improved, the chip deposition on the rake surface was reduced and the torsion torque has a smaller value compared to the standard tap geometry.


Author(s):  
Van-Hien Nguyen ◽  
Sung-Lim Ko

This paper presents a mathematical model to find the wheel location in grinding a given helical flute of an end mill. Two new setting parameters are introduced to define the relative wheel location in workpiece coordinates. This model allows the wheel-axis orientation be expressed explicitly as a function of the design factors and machine setting parameters. By utilizing this explicit form of the wheel orientation and analyzing the influence of setting parameters on design parameters, a new efficient search algorithm is proposed, and the performance shows that the required wheel location is found within 1.5 s to machine a given flute profile. Moreover, the rake angle can be produced more precisely compared with the conventional methods, which have been used with approximations. A comprehensive development of the software for designing and grinding the helical flute of the end mill is presented, which provides a technology and good foundation for the development of a computer-aided design and computer-aided manufacturing (CAD/CAM) system for manufacturing end mills. The results of the experiment, simulation, and design are compared in order to verify of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document