Thermoelastic Coupling Vibration Characteristics of the Axially Moving Beam With Frictional Contact

2010 ◽  
Vol 132 (5) ◽  
Author(s):  
Guo Xu-Xia ◽  
Wang Zhong-Min

The thermoelastic coupling vibration characteristics of the axially moving beam with frictional contact are investigated. The piecewise differential equation of motion for the axially moving beam in the thermoelastic coupling case and the continuous conditions at the contact point are established. The eigenequation is derived by the differential quadrature method, and the first order dimensionless complex frequencies of the simply supported axially moving beam under the coupled thermoelastic case are calculated. The effects of the dimensionless thermoelastic coupling factor, the dimensionless moving speed, the spring stiffness, the friction coefficient, and the normal pressure on the thermoelastic coupling vibration characteristics of the axially moving beam with frictional contact are discussed.

2008 ◽  
Vol 75 (3) ◽  
Author(s):  
Gottfried Spelsberg-Korspeter ◽  
Oleg N. Kirillov ◽  
Peter Hagedorn

This paper considers a moving beam in frictional contact with pads, making the system susceptible for self-excited vibrations. The equations of motion are derived and a stability analysis is performed using perturbation techniques yielding analytical approximations to the stability boundaries. Special attention is given to the interaction of the beam and the rod equations. The mechanism yielding self-excited vibrations does not only occur in moving beams, but also in other moving continua such as rotating plates, for example.


2013 ◽  
Vol 2013 ◽  
pp. 1-18 ◽  
Author(s):  
Bamadev Sahoo ◽  
L. N. Panda ◽  
G. Pohit

The nonlinear vibration of a travelling beam subjected to principal parametric resonance in presence of internal resonance is investigated. The beam velocity is assumed to be comprised of a constant mean value along with a harmonically varying component. The stretching of neutral axis introduces geometric cubic nonlinearity in the equation of motion of the beam. The natural frequency of second mode is approximately three times that of first mode; a three-to-one internal resonance is possible. The method of multiple scales (MMS) is directly applied to the governing nonlinear equations and the associated boundary conditions. The nonlinear steady state response along with the stability and bifurcation of the beam is investigated. The system exhibits pitchfork, Hopf, and saddle node bifurcations under different control parameters. The dynamic solutions in the periodic, quasiperiodic, and chaotic forms are captured with the help of time history, phase portraits, and Poincare maps showing the influence of internal resonance.


1974 ◽  
Vol 297 (3) ◽  
pp. 201-220 ◽  
Author(s):  
B. Tabarrok ◽  
C.M. Leech ◽  
Y.I. Kim

2009 ◽  
Vol 325 (3) ◽  
pp. 597-608 ◽  
Author(s):  
Xu-Xia Guo ◽  
Zhong-Min Wang ◽  
Yan Wang ◽  
Yin-Feng Zhou

Sign in / Sign up

Export Citation Format

Share Document