thermoelastic coupling
Recently Published Documents


TOTAL DOCUMENTS

40
(FIVE YEARS 10)

H-INDEX

8
(FIVE YEARS 1)

Mathematics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 9
Author(s):  
Ashraf M. Zenkour ◽  
Daoud S. Mashat ◽  
Ashraf M. Allehaibi

The current article introduces the thermoelastic coupled response of an unbounded solid with a cylindrical hole under a traveling heat source and harmonically altering heat. A refined dual-phase-lag thermoelasticity theory is used for this purpose. A generalized thermoelastic coupled solution is developed by using Laplace’s transforms technique. Field quantities are graphically displayed and discussed to illustrate the effects of heat source, phase-lag parameters, and the angular frequency of thermal vibration on the field quantities. Some comparisons are made with and without the inclusion of a moving heat source. The outcomes described here using the refined dual-phase-lag thermoelasticity theory are the most accurate and are provided as benchmarks for other researchers.


2019 ◽  
Vol 2019 ◽  
pp. 1-18
Author(s):  
Yongqiang Yang ◽  
Zhongmin Wang

This study investigates the thermoelastic coupling vibration and stability of rotating annular sector plates. Based on Hamilton’s principle and thermal conduction equation with deformation effect, the differential equation of transverse vibration for a rotating annular sector plate is established. The differential equation of vibration and corresponding boundary conditions are discretized by the differential quadrature method. Then, the thermoelastic coupling transverse vibrations under three different boundary conditions are calculated. The change curve of the first three order dimensionless complex frequencies of the rotating annular sector plate with the dimensionless angular speed are analyzed in the case of the thermoelastic coupling and uncoupling. The effects of the dimensionless angular speed, the ratio of inner to outer radius, the sector angle, and the dimensionless thermoelastic coupling coefficient on transverse vibration and stability of the annular sector plate are discussed. Finally, we obtained the type of instability and corresponding critical speed of the rotating annular sector plate in the case of the thermoelastic coupling and uncoupling.


Sign in / Sign up

Export Citation Format

Share Document