Nonlinear Fractional Derivative Models of Viscoelastic Impact Dynamics Based on Entropy Elasticity and Generalized Maxwell Law

Author(s):  
Masataka Fukunaga ◽  
Nobuyuki Shimizu

Two types of models are proposed for describing nonlinear fractional derivative dynamical behavior of viscoelastic materials subject to impulse forces. The models are derived based on the thermodynamic elasticity in terms of entropy and on the “scale-free response of the material” under the basic assumption that the viscoelastic materials consist of stable coils of polymers, which we refer to as blobs. The blobs, which may be connected to each other by chemical bonds or physical bonds, are considered here as the elementary constituent of viscoelastic materials from which the nonlinear fractional derivative models are derived. Responses of individual blobs can determine the net collective response of the viscoelastic material to impulse forces. From the above consideration, two types of models are proposed in which the force elements or the stress elements are connected by the generalized Maxwell law.

Author(s):  
Masataka Fukunaga ◽  
Nobuyuki Shimizu

A methodology to derive fractional derivative constitutive models for finite deformation of viscoelastic materials is proposed in a continuum mechanics treatment. Fractional derivative models are generalizations of the models given by the objective rates. The method of generalization is applied to the case in which the objective rate of the Cauchy stress is given by the Truesdell rate. Then, a fractional derivative model is obtained in terms of the second Piola–Kirchhoff stress tensor and the right Cauchy-Green strain tensor. Under the assumption that the dynamical behavior of the viscoelastic materials comes from a complex combination of elastic and viscous elements, it is shown that the strain energy of the elastic elements plays a fundamental role in determining the fractional derivative constitutive equation. As another example of the methodology, a fractional constitutive model is derived in terms of the Biot stress tensor. The constitutive models derived in this paper are compared and discussed with already existing models. From the above studies, it has been proved that the methodology proposed in this paper is fully applicable and effective.


Author(s):  
Masataka Fukunaga ◽  
Nobuyuki Shimizu

In this paper, we formulate two nonlinear stress-strain relations including memory effect in the dynamical behavior of gels that are the kind of viscoelastic materials. The basic assumption of the model is made that the gels consist of blobs of high polymers. Hereditary response of blobs to the stress determines the average stress-strain relation of the material. Two stress-strain relations are derived for different models of gels. These stress-strain relations are compared with the fractional derivative version of Lodge’s rubber-like liquids and the empirical nonlinear fractional derivative model proposed by Fukunaga et. al. at FDA08.


AIAA Journal ◽  
1995 ◽  
Vol 33 (3) ◽  
pp. 547-550 ◽  
Author(s):  
Lloyd B. Eldred ◽  
William P. Baker ◽  
Anthony N. Palazotto

Author(s):  
Masataka Fukunaga ◽  
Nobuyuki Shimizu ◽  
Hiroshi Nasuno

Nonlinear fractional calculus model for the viscoelastic material is examined for oscillation around the off-equilibrium point. The model equation consists of two terms of different order fractional derivatives. The lower order derivative characterizes the slow process, and the higher order derivative characterizes the process of rapid oscillation. The measured difference in the order of the fractional derivative of the material, that the order is higher when the material is rapidly oscillated than when it is slowly compressed, is partly attributed to the difference in the frequency dependence between the two fractional derivatives. However, it is found that there could be possibility for the variable coefficients of the two terms with the rate of change of displacement.


2015 ◽  
Author(s):  
Fernanda Oliveira Balbino ◽  
Paulo Justiniano Ribeiro Junior ◽  
Marilda Munaro ◽  
Eduardo Marcio Oliveira Lopes

2015 ◽  
Vol 08 (06) ◽  
pp. 1550079
Author(s):  
M. Javidi ◽  
N. Nyamoradi

In this paper, we investigate the dynamical behavior of a fractional order phytoplankton–zooplankton system. In this paper, stability analysis of the phytoplankton–zooplankton model (PZM) is studied by using the fractional Routh–Hurwitz stability conditions. We have studied the local stability of the equilibrium points of PZM. We applied an efficient numerical method based on converting the fractional derivative to integer derivative to solve the PZM.


Sign in / Sign up

Export Citation Format

Share Document