kirchhoff stress tensor
Recently Published Documents


TOTAL DOCUMENTS

13
(FIVE YEARS 5)

H-INDEX

4
(FIVE YEARS 1)

Author(s):  
Mehrdad Palizi ◽  
Salvatore Federico ◽  
Samer Adeeb

Abstract In hypoelastic constitutive models, an objective stress rate is related to the rate of deformation through an elasticity tensor. The Truesdell, Jaumann, and Green–Naghdi rates of the Cauchy and Kirchhoff stress tensors are examples of the objective stress rates. The finite element analysis software ABAQUS uses a co-rotational frame which is based on the Jaumann rate for solid elements and on the Green–Naghdi rate for shell and membrane elements. The user subroutine UMAT is the platform to implement a general constitutive model into ABAQUS, but, in order to update the Jacobian matrix in UMAT, the model must be expressed in terms of the Jaumann rate of the Kirchhoff stress tensor. This study aims to formulate and implement various hypoelastic constitutive models into the ABAQUS UMAT subroutine. The developed UMAT subroutine codes are validated using available solutions, and the consequence of using wrong Jacobian matrices is elucidated. The UMAT subroutine codes are provided in the “Electronic Supplementary Material” repository for the user’s consideration.


2020 ◽  
Vol 73 (2) ◽  
pp. 177-199
Author(s):  
R Bustamante

Summary Some universal solutions are studied for a new class of elastic bodies, wherein the Hencky strain tensor is assumed to be a function of the Kirchhoff stress tensor, considering in particular the case of assuming the bodies to be isotropic and incompressible. It is shown that the families of universal solutions found in the classical theory of nonlinear elasticity, are also universal solutions for this new type of constitutive equation.


2019 ◽  
Vol 7 (3) ◽  
pp. 541-541
Author(s):  
Giorgio Greto ◽  
Sivakumar Kulasegaram

The symbol was introduced incorrectly inside the “Time-stepping the solution” box, directly under the “Compute first Piola–Kirchhoff stress tensor Pi” as in “Appendix A” listing.


2019 ◽  
Vol 11 (07) ◽  
pp. 1950064
Author(s):  
Alexey Markin ◽  
Marina Sokolova ◽  
Dmitrii Khristich ◽  
Yuri Astapov

This work is devoted to the new variant of relations between the energetically conjugated Hencky strain tensor and corotational Kirchhoff stress tensor. The elastic energy is represented as a third-order polynomial of the Hencky tensor containing five material constants. Unlike the Almansi tensor in the Murnaghan model, the Hencky tensor allows assigning a clear physical meaning to material constants. Linear part of the constitutive relation represents the Hencky model and contains the bulk modulus and the shear modulus. The two extra constants express nonlinear effects at a purely volumetric strain and a purely isochoric strain, whereas the third constant takes into account the possible deviation from the similarity of the deviators of the Hencky stress and strain tensors. The resulting relations are naturally generalized for incompressible materials. In this case, the overall number of constants decreases from five to two. The designed test unit was used for a compression test of prismatic specimens made of incompressible material. The proposed version of the relations is in good agreement with the experimental data on the compression of rubber samples.


2019 ◽  
Vol 19 (04) ◽  
pp. 1950048 ◽  
Author(s):  
E. Ruocco ◽  
J. N. Reddy

A closed-form solution based on the Reddy third-order shear deformation plate theory is proposed for the buckling of both flat and stiffened plates, simply supported on two opposite edges. The effect of the nonlinear strain–displacement terms, usually neglected under the von Kármán hypothesis, on the buckling of thick plates is investigated, and the equations governing the critical behavior considering the full Green–Lagrange strain tensor and the second Piola–Kirchhoff stress tensor are derived using the principle of minimum potential energy. The general Levy-type approach is employed, and the accuracy and effectiveness of the proposed formulation is validated through direct comparison with analytical and numerical results available in the literature. The parametric analyses performed for different geometrical ratios show that the von Kármán hypothesis holds only for thin flat plates whereas it can significantly overestimate buckling loads for stiffened plates, for which the buckling mode entails comparable in-plane and out-of-plane displacements.


Author(s):  
Masataka Fukunaga ◽  
Nobuyuki Shimizu

A methodology to derive fractional derivative constitutive models for finite deformation of viscoelastic materials is proposed in a continuum mechanics treatment. Fractional derivative models are generalizations of the models given by the objective rates. The method of generalization is applied to the case in which the objective rate of the Cauchy stress is given by the Truesdell rate. Then, a fractional derivative model is obtained in terms of the second Piola–Kirchhoff stress tensor and the right Cauchy-Green strain tensor. Under the assumption that the dynamical behavior of the viscoelastic materials comes from a complex combination of elastic and viscous elements, it is shown that the strain energy of the elastic elements plays a fundamental role in determining the fractional derivative constitutive equation. As another example of the methodology, a fractional constitutive model is derived in terms of the Biot stress tensor. The constitutive models derived in this paper are compared and discussed with already existing models. From the above studies, it has been proved that the methodology proposed in this paper is fully applicable and effective.


2015 ◽  
Vol 145 (6) ◽  
pp. 1183-1214 ◽  
Author(s):  
Mariano Giaquinta ◽  
Paolo Maria Mariano ◽  
Giuseppe Modica

We consider a simple body that is hyperelastic in the large-strain regime until the 3-covector defining the first Piola–Kirchhoff stress, once it has been projected on the appropriate second-rank tensor space, reaches a threshold indicating critical states. No information is given on the post-critical behaviour. We determine the existence of equilibrium configurations according to the constraint. Such configurations can have a concentration of strain in regions with vanishing volume. The related stress appears naturally as a measure over the deformation graph. Once it is restricted to the regular part of the deformation, such a measure determines the first Piola–Kirchhoff stress tensor and may also be concentrated over sets with vanishing volume projections on the reference and current placements. These configurations in space can be interpreted as dislocations or dislocation walls. We analyse explicitly specific cases.


2013 ◽  
Vol 59 (3) ◽  
pp. 381-400
Author(s):  
J. Zamorowski

Abstract The paper presents the author’s non-linear FEM solution of an initially stressless deformed flat frame element, in which the nodes are situated along the axis of the bar initially straight. It has been assumed that each node may sustain arbitrary displacements and rotation. The solution takes into account the effect of shear, the geometrical non-linearity with large displacements (Green-Lagrange’s strain tensor) and moderate rotations (i.e. such ones which allow a linear-elastic behaviour of the material) and alternative small rotations when the second Piola-Kirchhoff stress tensor is applied. This solution is based on [1], concerning beams without any initial bow imperfections. The convergence of the obtained results at different numbers of nodes and Gauss points in the element was tested basing on the example of circular arcs with a central angle of 120° ÷180°. The analysis concerned elements with two, three, five, seven, nine and eleven nodes, for the same number of points of numerical integration and also with one more or less. Moreover, the effect of distributing the load on the convergence of the results was analyzed.


Sign in / Sign up

Export Citation Format

Share Document