Uniaxial Strain and Stress-Controlled Cyclic Responses of Ultrahigh Molecular Weight Polyethylene: Experiments and Model Simulations

Author(s):  
Tasnim Hassan ◽  
Ozgen U. Çolak ◽  
Patricia M. Clayton

Thermoplastics such as ultrahigh molecular weight polyethylene (UHMWPE) are used for a wide variety of applications, such as bearing material in total replacement of knee and hip components, seals, gears, and unlubricated bearing. Accurate prediction of stresses and deformations of UHMWPE components under service conditions is essential for the design and analysis of these components. This, in turn, requires a cyclic, viscoplastic constitutive model that can simulate cyclic responses of UHMWPE under a wide variety of uniaxial and multiaxial, strain, and stress-controlled cyclic loading. Such a constitutive model validated against a broad set of experimental responses is not available mainly because of the lack of experimental data of UHMWPE. Toward achieving such a model, this study conducted a systematic set of uniaxial experiments on UHMWPE thin-walled, tubular specimens by prescribing strain and stress-controlled cyclic loading. The tubular specimen was designed so that both uniaxial and biaxial experiments can be conducted using one type of specimen. The experimental responses developed are presented for demonstrating the cyclic and ratcheting responses of UHMWPE under uniaxial loading. The responses also are scrutinized for determining the applicability of the thin-walled, tubular specimen in conducting large strain cyclic experiments. A unified state variable theory, the viscoplasticity theory based on overstress for polymers (VBOP) is implemented to simulate the recorded uniaxial responses of UHMWPE. The state of the VBOP model simulation is discussed and model improvements needed are suggested.

2016 ◽  
Vol 83 (10) ◽  
Author(s):  
Kaijuan Chen ◽  
Guozheng Kang ◽  
Chao Yu ◽  
Fucong Lu ◽  
Han Jiang

Uniaxial tension–unloading recovery, creep-recovery, and stress-controlled cyclic tests are first performed to investigate the recoverable viscoelasticity and irrecoverable viscoplasticity (including the uniaxial ratchetting) of ultrahigh molecular weight polyethylene (UHMWPE) polymer at room temperature. The results show that obvious time-dependent ratchetting occurs in the asymmetrical stress-controlled cyclic tension–compression and tension–tension tests of the UHMWPE, and total ratchetting strain consists of both recoverable viscoelastic and irrecoverable viscoplastic parts. Based on the experimental observation, a new viscoelastic–viscoplastic constitutive model is proposed to describe the time-dependent ratchetting of the UHMWPE. In the proposed model, the viscoplastic strain is set to be contributed simultaneously by the unified viscoplastic and creep ones. Meanwhile, a memory surface is introduced into the viscoelastic model to improve the description to the shapes of stress–strain hysteresis loops. Finally, the proposed model is verified by comparing the predictions with the corresponding experimental results of the UHMWPE. It is clearly demonstrated that the proposed model predicts the creep, viscoelastic recovery, and uniaxial time-dependent ratchetting of the UHMWPE well.


Sign in / Sign up

Export Citation Format

Share Document