Galerkin Approximations for Higher Order Delay Differential Equations

Author(s):  
C. P. Vyasarayani

In this work, Galerkin approximations are developed for a system of n first order nonlinear delay differential equations (DDEs) and also for an nth order nonlinear scalar DDE. The DDEs are converted into an equivalent system of partial differential equations of the same order along with the nonlinear boundary constraints. Lagrange multipliers are then introduced and explicit expressions for the Lagrange multipliers are derived to enforce the nonlinear boundary constraints. To illustrate the method, comparisons are made between the numerical solution of nonlinear DDEs and its Galerkin approximations for different parameter values.


Author(s):  
C. P. Vyasarayani

In this work, Galerkin approximations are developed for a system of first order nonlinear neutral delay differential equations (NDDEs). The NDDEs are converted into an equivalent system of hyperbolic partial differential equations (PDEs) along with the nonlinear boundary constraints. Lagrange multipliers are introduced to enforce the boundary constraints. The explicit expressions for the Lagrange multipliers are derived by exploiting the equivalence of partial derivatives in space and time at a given point on the domain. To illustrate the method, comparisons are made between numerical solution of NDDEs and its Galerkin approximations for different NDDEs.





Sign in / Sign up

Export Citation Format

Share Document