Supercritical Carbon Dioxide Heat Transfer in Horizontal Semicircular Channels

2012 ◽  
Vol 134 (8) ◽  
Author(s):  
Alan Kruizenga ◽  
Hongzhi Li ◽  
Mark Anderson ◽  
Michael Corradini

Competitive cycles must have a minimal initial cost and be inherently efficient. Currently, the supercritical carbon dioxide (S-CO2) Brayton cycle is under consideration for these very reasons. This paper examines one major challenge of the S-CO2 Brayton cycle: the complexity of heat exchanger design due to the vast change in thermophysical properties near a fluid’s critical point. Turbulent heat transfer experiments using carbon dioxide, with Reynolds numbers up to 100 K, were performed at pressures of 7.5–10.1 MPa, at temperatures spanning the pseudocritical temperature. The geometry employed nine semicircular, parallel channels to aide in the understanding of current printed circuit heat exchanger designs. Computational fluid dynamics was performed using FLUENT and compared to the experimental results. Existing correlations were compared, and predicted the data within 20% for pressures of 8.1 MPa and 10.2 MPa. However, near the critical pressure and temperature, heat transfer correlations tended to over predict the heat transfer behavior. It was found that FLUENT gave the best prediction of heat transfer results, provided meshing was at a y+ ∼ 1.

Author(s):  
Joshua Schmitt ◽  
David Amos ◽  
Jayanta Kapat

The goal of this study is to design and assess the effectiveness of a micro-channel recuperator using supercritical carbon dioxide as a working fluid. A one-dimensional thermal analysis is performed for a micro-channel recuperator suitable for a Brayton cycle with a nominal 100 MW class turbomachine. The impact of supercritical carbon dioxide properties near the critical point on the thermal performance of the recuperator is studied in detail. The cycle parameters are first obtained from an overall cycle analysis. Two adjacent flow passages with square cross-section in counter-flow configuration are considered for this analysis along with appropriate symmetry. The high pressure of SCO2 is also addressed and the structural stresses on the micro-channel walls are analyzed. Only the axial temperature variations in the hot stream and the cold stream are considered in the one-dimensional analysis. Each channel is discretized in the axial direction. Axial conduction through the wall is included in the energy balance. Of particular interest in this analysis is the variation of transport properties of the CO2 working fluid as thermodynamic conditions approach the critical point. These property variations are provided to the computer code through the REFPROP database. Over the length of the heat exchanger local changes in Reynolds number, Nusselt number, and heat transfer coefficient are charted. From the results of the heat transfer calculations, the log mean temperature difference and heat exchange effectiveness of the heat exchanger is calculated. Using the code to produce multiple results, the optimum heat exchanger design is found. Recommendations on the manufacturing method of a micro-channel recuperator are made.


2008 ◽  
Vol 22 (12) ◽  
pp. 2563-2577 ◽  
Author(s):  
Seong Ho Han ◽  
Young Don Choi ◽  
Jong Keun Shin ◽  
Young Chan Kim ◽  
Min Soo Kim

Author(s):  
Alan Kruizenga ◽  
Mark Anderson ◽  
Roma Fatima ◽  
Michael Corradini ◽  
Aaron Towne ◽  
...  

The increasing importance of improving efficiency and reducing capital costs has lead to significant work studying advanced Brayton cycles for high temperature energy conversion. Using compact, highly efficient, diffusion-bonded heat exchangers for the recuperators, has been a noteworthy improvement in the design of advanced carbon dioxide Brayton Cycles. These heat exchangers will operate near the pseudocritical point of carbon dioxide, making use of the drastic variation of the thermo-physical properties. This paper focuses on the experimental measurements of heat transfer under cooling conditions, as well as pressure drop characteristics within a prototypic printed circuit heat exchanger. Studies utilize type-316 stainless steel, nine channel, semi-circular test section, and supercritical carbon dioxide serves as the working fluid throughout all experiments. The test section channels have a hydraulic diameter of 1.16mm and a length of 0.5m. The mini-channels are fabricated using current chemical etching technology, emulating techniques used in current diffusion bonded printed circuit heat exchanger manufacturing. Local heat transfer values were determined using measured wall temperatures and heat fluxes over a large set of experimental parameters that varied system pressure, inlet temperature, and mass flux. Experimentally determined heat transfer coefficients and pressure drop data are compared to correlations and earlier data available in literature. Modeling predictions using the CFD package FLUENT are included to supplement experimental data. All nine channels were modeled using known inlet conditions and measured wall temperatures as boundary conditions. The FLUENT results show excellent agreement in total power removal for the near pseudocritical region, as well as regions where carbon dioxide is a high or low density fluid.


Author(s):  
Alan Kruizenga ◽  
Mark Anderson ◽  
Roma Fatima ◽  
Michael Corradini ◽  
Aaron Towne ◽  
...  

The increasing importance of improving efficiency and reducing capital costs has led to significant work studying advanced Brayton cycles for high temperature energy conversion. Using compact, highly efficient, diffusion-bonded heat exchangers for the recuperators has been a noteworthy improvement in the design of advanced carbon dioxide Brayton cycles. These heat exchangers will operate near the pseudocritical point of carbon dioxide, making use of the drastic variation of the thermophysical properties. This paper focuses on the experimental measurements of heat transfer under cooling conditions, as well as pressure drop characteristics within a prototypic printed circuit heat exchanger. Studies utilize type-316 stainless steel, nine channel, semi-circular test section, and supercritical carbon dioxide serves as the working fluid throughout all experiments. The test section channels have a hydraulic diameter of 1.16 mm and a length of 0.5 m. The mini-channels are fabricated using current chemical etching technology, emulating techniques used in current diffusion-bonded printed circuit heat exchanger manufacturing. Local heat transfer values were determined using measured wall temperatures and heat fluxes over a large set of experimental parameters that varied system pressure, inlet temperature, and mass flux. Experimentally determined heat transfer coefficients and pressure drop data are compared to correlations and earlier data available in literature. Modeling predictions using the computational fluid dynamics (CFD) package FLUENT are included to supplement experimental data. All nine channels were modeled using known inlet conditions and measured wall temperatures as boundary conditions. The CFD results show excellent agreement in total heat removal for the near pseudocritical region, as well as regions where carbon dioxide is a high or low density fluid.


Sign in / Sign up

Export Citation Format

Share Document