scholarly journals Heat Transfer Performance Comparisons of Supercritical Carbon Dioxide and NaCl–KCl–ZnCl 2 Eutectic Salts for Solar s-CO 2 Brayton Cycle

2017 ◽  
Vol 142 ◽  
pp. 680-687
Author(s):  
Yawen Zhao ◽  
Peiwen Li ◽  
Hongguang Jin
2012 ◽  
Vol 134 (8) ◽  
Author(s):  
Alan Kruizenga ◽  
Hongzhi Li ◽  
Mark Anderson ◽  
Michael Corradini

Competitive cycles must have a minimal initial cost and be inherently efficient. Currently, the supercritical carbon dioxide (S-CO2) Brayton cycle is under consideration for these very reasons. This paper examines one major challenge of the S-CO2 Brayton cycle: the complexity of heat exchanger design due to the vast change in thermophysical properties near a fluid’s critical point. Turbulent heat transfer experiments using carbon dioxide, with Reynolds numbers up to 100 K, were performed at pressures of 7.5–10.1 MPa, at temperatures spanning the pseudocritical temperature. The geometry employed nine semicircular, parallel channels to aide in the understanding of current printed circuit heat exchanger designs. Computational fluid dynamics was performed using FLUENT and compared to the experimental results. Existing correlations were compared, and predicted the data within 20% for pressures of 8.1 MPa and 10.2 MPa. However, near the critical pressure and temperature, heat transfer correlations tended to over predict the heat transfer behavior. It was found that FLUENT gave the best prediction of heat transfer results, provided meshing was at a y+ ∼ 1.


Author(s):  
Joshua Schmitt ◽  
David Amos ◽  
Jayanta Kapat

The goal of this study is to design and assess the effectiveness of a micro-channel recuperator using supercritical carbon dioxide as a working fluid. A one-dimensional thermal analysis is performed for a micro-channel recuperator suitable for a Brayton cycle with a nominal 100 MW class turbomachine. The impact of supercritical carbon dioxide properties near the critical point on the thermal performance of the recuperator is studied in detail. The cycle parameters are first obtained from an overall cycle analysis. Two adjacent flow passages with square cross-section in counter-flow configuration are considered for this analysis along with appropriate symmetry. The high pressure of SCO2 is also addressed and the structural stresses on the micro-channel walls are analyzed. Only the axial temperature variations in the hot stream and the cold stream are considered in the one-dimensional analysis. Each channel is discretized in the axial direction. Axial conduction through the wall is included in the energy balance. Of particular interest in this analysis is the variation of transport properties of the CO2 working fluid as thermodynamic conditions approach the critical point. These property variations are provided to the computer code through the REFPROP database. Over the length of the heat exchanger local changes in Reynolds number, Nusselt number, and heat transfer coefficient are charted. From the results of the heat transfer calculations, the log mean temperature difference and heat exchange effectiveness of the heat exchanger is calculated. Using the code to produce multiple results, the optimum heat exchanger design is found. Recommendations on the manufacturing method of a micro-channel recuperator are made.


2017 ◽  
Vol 139 (11) ◽  
Author(s):  
Chien-Yuh Yang ◽  
Kun-Chieh Liao

This paper provides an experimental investigation of heat transfer and pressure drop of supercritical carbon dioxide cooling in a microchannel heat exchanger. An extruded flat aluminum tube with 37 parallel channels and each channel of 0.5 mm × 0.5 mm cross section was used as the test section. The temperature drops of supercritical CO2 cooled inside the test section were controlled at 2 °C, 4 °C, and 8 °C separately for each test to investigate the effect of property change on the friction and heat transfer performance at various temperature cooling ranges near the critical point. The test results showed that while the test conditions were away from the critical point, both heat transfer and pressure drop performance agreed very well with those predicted by conventional correlations. However, for the test conditions near the critical point, the difference between those of the test results and the predicted values is very high. Both heat transfer and pressure drop were strongly affected by the ranges of temperature cooling in the test section while they were near the critical conditions. Since there is a drastic peak of the property change near the critical point, if we use the properties integrated but not averaged from inlet to the exit temperatures, we obtain the results that agree well with the values predicted by conventional correlations. The heat transfer and pressure drop performance of supercritical carbon dioxide in microchannels with size near 0.5 mm are indeed similar to these at normal conditions if its properties are appropriately evaluated.


Author(s):  
Jinlan Gou ◽  
Wei Wang ◽  
Can Ma ◽  
Yong Li ◽  
Yuansheng Lin ◽  
...  

Using supercritical carbon dioxide (SCO2) as the working fluid of a closed Brayton cycle gas turbine is widely recognized nowadays, because of its compact layout and high efficiency for modest turbine inlet temperature. It is an attractive option for geothermal, nuclear and solar energy conversion. Compressor is one of the key components for the supercritical carbon dioxide Brayton cycle. With established or developing small power supercritical carbon dioxide test loop, centrifugal compressor with small mass flow rate is mainly investigated and manufactured in the literature; however, nuclear energy conversion contains more power, and axial compressor is preferred to provide SCO2 compression with larger mass flow rate which is less studied in the literature. The performance of the axial supercritical carbon dioxide compressor is investigated in the current work. An axial supercritical carbon dioxide compressor with mass flow rate of 1000kg/s is designed. The thermodynamic region of the carbon dioxide is slightly above the vapor-liquid critical point with inlet total temperature 310K and total pressure 9MPa. Numerical simulation is then conducted to assess this axial compressor with look-up table adopted to handle the nonlinear variation property of supercritical carbon dioxide near the critical point. The results show that the performance of the design point of the designed axial compressor matches the primary target. Small corner separation occurs near the hub, and the flow motion of the tip leakage fluid is similar with the well-studied air compressor. Violent property variation near the critical point creates troubles for convergence near the stall condition, and the stall mechanism predictions are more difficult for the axial supercritical carbon dioxide compressor.


Sign in / Sign up

Export Citation Format

Share Document