Comparison of Two Linear Collectors in Solar Thermal Plants: Parabolic Trough Versus Fresnel

2012 ◽  
Vol 135 (1) ◽  
Author(s):  
A. Giostri ◽  
M. Binotti ◽  
P. Silva ◽  
E. Macchi ◽  
G. Manzolini

Parabolic trough (PT) technology can be considered the state of the art for solar thermal power plants thanks to the almost 30 yr of experience gained in SEGS and, recently, Nevada Solar One plants in the United States and Andasol plant in Spain. One of the major issues that limits the wide diffusion of this technology is the high investment cost of the solar field and, particularly, of the solar collector. For this reason, research has focused on developing new solutions that aim to reduce costs. This paper compares, at nominal conditions, commercial Fresnel technology for direct steam generation with conventional parabolic trough technology based on synthetic oil as heat-transfer. The comparison addresses nominal conditions as well as annual average performance. In both technologies, no thermal storage system is considered. Performance is calculated by Thermoflex®, a commercial code, with a dedicated component to evaluate solar plant. Results will show that, at nominal conditions, Fresnel technology has an optical efficiency of 67%, which is lower than the 75% efficiency of the parabolic trough. Calculated net electric efficiency is about 19.25%, whereas PT technology achieves 23.6% efficiency. In off-design conditions, the performance gap between Fresnel and parabolic trough increases because the former is significantly affected by high incident angles of solar radiation. The calculated sun-to-electric annual average efficiency for a Fresnel plant is 10.2%, which is a consequence of the average optical efficiency of 38.8%; a parabolic trough achieves an overall efficiency of 16%, with an optical efficiency of 52.7%. An additional case with a Fresnel collector and synthetic-oil outlines the differences among the cases investigated. Since part of the performance difference between Fresnel and PT technologies is simply due to different definitions, we introduce additional indexes to make a consistent comparison. Finally, a simplified economic assessment shows that Fresnel collectors must reduce investment costs of at least 45% than parabolic trough to achieve the same levelized cost of electricity.

Author(s):  
A. Giostri ◽  
M. Binotti ◽  
P. Silva ◽  
E. Macchi ◽  
G. Manzolini

Parabolic trough can be considered the state of the art for solar thermal power plants thanks to the almost 30 years experience gained in SEGS and, recently, Nevada Solar One plants in US and Andasol plants in Spain. One of the major issues that limits the wide diffusion of this technology is the high investment cost of the solar field and, particularly, of the solar collector. For this reason, since several years research activity has been trying to develop new solutions with the aim of cost reduction. This work compares commercial Fresnel technology with conventional parabolic trough plant based on synthetic oil as heat transfer fluid at nominal conditions and evaluates yearly average performances. In both technologies, no thermal storage system is considered. In addition, for Fresnel, a Direct Steam Generation (DSG) case is investigated. Performances are calculated by a commercial code, Thermoflex®, with dedicated component to evaluate solar plant. Results will show that, at nominal conditions, Fresnel technology have an optical efficiency of 67% which is lower than 75% of parabolic trough. Calculated net electric efficiency is about 19.25%, while parabolic trough technology achieves 23.6%. In off-design conditions, the gap between Fresnel and parabolic trough increases because the former is significantly affected by high radiation incident angles. The calculated sun-to-electric annual average efficiency for Fresnel plant is 10.2%, consequence of the average optical efficiency of 38.8%, while parabolic trough achieve an overall efficiency of 16%, with an optical one of 52.7%. An additional case with Fresnel collector and synthetic oil outlines differences among investigated cases. Finally, because part of performance difference between PT and Fresnel is simple due to different definitions, additional indexes are introduced in order to make a consistent comparison.


Author(s):  
M. Eck ◽  
W.-D. Steinmann

The direct steam generation (DSG) is an attractive option regarding the economic improvement of parabolic trough technology for solar thermal electricity generation in the multi megawatt range. According to [1] and [2] a 10% reduction of the LEC is expected compared to conventional SEGS like parabolic trough power plants. The European DISS project has proven the feasibility of the DSG process under real solar conditions at pressures up to 100 bar and temperatures up to 400°C in more than 4000 operation hours [3]. In a next step the detailed engineering for a pre-commercial DSG solar thermal power plant will be performed. This detailed engineering of the collector field requires the consideration of the occurring thermohydraulic phenomena and their influence on the stability of the absorber tubes. A design tool has been developed at DLR calculating all relevant process parameters including pressure drop, temperature field and stress in the absorber tubes. The models implemented in this design tool have been validated in detail at the DISS test facility under real DSG conditions for pressures between 30 and 100 bar and inner diameters between 50 and 85 mm. The models have been implemented into a MATLAB® program to allow for a first quick determination of critical process conditions. Once critical process conditions have been identified the FEM package ANSYS® is used for a detailed investigation. This article summarises the models used and shows the design procedure for a DSG collector field. The design program has proven to be a reliable tool for the detailed design of DSG collector fields.


2005 ◽  
Vol 127 (3) ◽  
pp. 371-380 ◽  
Author(s):  
M. Eck ◽  
W.-D. Steinmann

The direct steam generation (DSG) is an attractive option regarding the economic improvement of parabolic trough technology for solar thermal electricity generation in the multi megawatt range. According to Price, H., Lu¨pfert, E., Kearney, D., Zarza, E., Cohen, G., Gee, R. Mahoney, R., 2002, “Advances in Parabolic Trough Solar Power Technology,” J. Sol. Energy Eng., 124 and Zarza, E., 2002, DISS Phase II-Final Project Report, EU Project No. JOR3-CT 980277 a 10% reduction of the LEC is expected compared to conventional SEGS like parabolic trough power plants. The European DISS project has proven the feasibility of the DSG process under real solar conditions at pressures up to 100 bar and temperatures up to 400°C in more than 4000 operation hours (Eck, M., Zarza, E., Eickhoff, M., Rheinla¨nder, J., Valenzuela, L., 2003, “Applied Research Concerning the Direct Steam Generation in Parabolic Troughs,” Solar Energy 74, pp. 341–351). In a next step the detailed engineering for a precommercial DSG solar thermal power plant will be performed. This detailed engineering of the collector field requires the consideration of the occurring thermohydraulic phenomena and their influence on the stability of the absorber tubes.


2014 ◽  
Vol 136 (1) ◽  
Author(s):  
Javier Sanz-Bermejo ◽  
Víctor Gallardo-Natividad ◽  
José Gonzalez-Aguilar ◽  
Manuel Romero

This work proposes and analyses several integration schemes specially conceived for direct steam generation (DSG) in megawatt (MW) range central receiver solar thermal power plants. It is focused on the optical performance related to the heliostat field and the arrangement of receiver absorbers, and the management of steam within a Rankine cycle in the range between 40–160 bar and 400–550 °C at design point. The solar receiver is composed of one single element for saturated steam systems or two vertically aligned separated units, which correspond to the boiler and the superheater (dual-receiver concept), for superheated steam solar thermal power plants. From a fixed heliostat field obtained after layout optimization for the saturated steam solar plant the heliostat field is divided in two concentric circular trapezoids where each of them independently supplies the solar energy required by the boiler and the superheater for the different steam conditions. It has been observed that the arrangement locating the boiler above the superheater provides a slightly higher optical efficiency of the collector system, formed by the solar field and the receiver, compared with the reverse option with superheater above boiler. Besides, two-zone solar fields provide lower performances than the entire heliostat layout aiming at one absorber (saturation systems). Optical efficiency of two-zone solar fields decreases almost linearly with the increment of superheater heat demand. Concerning the whole solar collector, heliostat field plus receiver, the performance decreases with temperature and almost linearly with the steam pressure. For the intervals of steam pressure and temperature under analysis, solar collector of saturated steam plant achieves an optical efficiency 3.2% points higher than the superheated steam system at 40 bar and 400 °C, and the difference increases up to 9.3% points when compared with superheated system at 160 bar and 550 °C. On the other hand, superheated steam systems at 550 °C and pressure between 60 and 80 bar provide the highest overall efficiency, and it is 2.3% points higher than performance of a saturated steam solar plant at 69 bar. However, if saturated steam cycle integrates an intermediate reheat process, both would provide similar performances. Finally, it has been observed that central receiver systems (CRS) producing saturated steam and superheated steam at 500 °C operating at 40 bar provide similar performances.


Energies ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3973 ◽  
Author(s):  
Llamas ◽  
Bullejos ◽  
Ruiz de Adana

Parabolic-trough solar-thermal power-plant investments are subordinate to radiation availability, thermal-energy storage capacity, and dynamic behavior. Their integration into electricity markets is made by minimizing grid-connection costs, thus improving energy-availability and economic-efficiency levels. In this context, this work analyzes the sizing-investment adequacy of a 100 MWe parabolic-trough solar-thermal power plant regarding solar resources and thermal energy into power-block availability for both regulated and deregulated electricity markets. For this proposal, the design of a mathematical model for the optimal operation of parabolic-trough power plants with thermal storage by two tanks of molten salt is described. Model calibration is made by using a currently operated plant. Solar-resource availability is studied in three different radiation scenarios. The levelized cost of electricity and production profit relating to the investment cost are used to analyze plant sustainability. Thus, the levelized cost of electricity shows the best plant configuration for each radiation scenario within a regulated market. For deregulated markets, the optimal plant configuration tends to enhance the solar multiple and thermal-storage capacity thanks to an increment on selling profit. The gross average annual benefit for electricity generation of deregulated against regulated markets exceeds 21% in all radiation areas under study.


Author(s):  
Markus Eck ◽  
David Kretschmann ◽  
Jan Fabian Feldhoff ◽  
Michael Wittmann

Technical and economical evaluation of solar thermal power plants constantly gains more importance for industry and research. The reliability of the results highly depends on the assumptions made for the applied parameters. Reducing a power plant system to one single, deterministic number for evaluation, like the levelized cost of electricity (LCOE), might end in misleading results. Probabilistic approaches can help to better evaluate systems [1] and scenarios [2]. While industry looks for safety in investment and profitability, research is predominantly interested in the evaluation of concepts and the identification of promising new approaches. Especially for research, dealing with higher and hardly quantifiable uncertainties, it is desirable to get a detailed view of the system and its main influences. However, to get there, also a good knowledge on the stochastic interrelations and its interpretation is required. Therefore, this paper mainly assesses the influences of basic stochastic assumptions and suggests a methodology to consider suitable stochastic input, especially for parameters of systems still under research. As examples, the comparison between a parabolic trough plant with synthetic oil and direct steam generation is used.


Author(s):  
F. Zaversky ◽  
S. Bergmann ◽  
W. Sanz

Solar thermal power plants are a promising way of providing clean renewable electric energy. These plants concentrate the incoming solar direct irradiation in order to heat up a heat transfer fluid. The collected thermal energy can be stored or instantly delivered to a power block where part of the thermal energy is converted to electrical energy in a turbine with the connected generator. The parabolic trough collector plant is the today’s most developed solar thermal power plant type. There the solar irradiation is focused on receiver tubes which are concentrically placed to the focal lines of the parabolic trough collectors. A high temperature oil is pumped through these receiver tubes, which collects the heat and delivers it later on to the steam generator of the connected Rankine steam cycle. In order to improve the efficiency of these solar thermal power plants, the direct steam generation (DSG) within the parabolic trough collector receiver tubes is being investigated. Both types of parabolic trough collectors, the conventional type using oil as heat transfer fluid and the direct steam generation type, are subject of this paper. A detailed steady-state parabolic trough collector model was developed for each type, using the thermodynamic simulation software IPSEpro. The developed models consider the cosine-loss attenuation factor, the shading attenuation factor, optical losses, as well as thermal losses. Appropriate heat transfer and pressure loss correlations were implemented for both collector types. For the direct steam generation model, distinct collectors for the preheating section, the evaporation section and the superheating section were used. Furthermore, the suitable length of discretization for the modeling of one collector loop within a center-fed solar field was investigated. Calculated solar field performance data for the oil concept were compared to validated data available in open literature. Finally, a power plant simulation with each collector type, over the course of one reference day, showed the great potential of the direct steam generation, as well as the suitability of IPSEpro for running solar thermal power plant yield simulations.


Sign in / Sign up

Export Citation Format

Share Document