scholarly journals Computational Aerodynamics: Solvers and Shape Optimization

2012 ◽  
Vol 135 (1) ◽  
Author(s):  
Luigi Martinelli ◽  
Antony Jameson

Aeronautics, and in particular aerodynamics, has been one of the main technological drivers for the development of computational fluid dynamics (CFD). This paper presents a personal account of the main advances in the development of solvers and shape optimization techniques, which have contributed to make CFD an essential part of the design process of modern aircraft.

2013 ◽  
Vol 61 (1) ◽  
pp. 155-160 ◽  
Author(s):  
G. Sztarbała

Abstract The aim of this paper is to present the application of Computational Fluid Dynamics (CFD) to the assessment of conditions inside construction works during a fire. The CFD method is now commonly used to support the design process of fire safety in construction works. This method is very useful at the preliminary stage of design because it is possible to check the internal environment during a fire and evaluate whether requirements of fire safety are met


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
D. López ◽  
C. Angulo ◽  
I. Fernández de Bustos ◽  
V. García

This study developed a framework for the shape optimization of aerodynamics profiles using computational fluid dynamics (CFD) and genetic algorithms. A genetic algorithm code and a commercial CFD code were integrated to develop a CFD shape optimization tool. The results obtained demonstrated the effectiveness of the developed tool. The shape optimization of airfoils was studied using different strategies to demonstrate the capacity of this tool with different GA parameter combinations.


Author(s):  
Alexandre T. P. Alho

In response to the need for better designs in less time and at low costs, computational fluid dynamics (CFD) is becoming an integral part of the vessel’s design process. Recent studies have shown that CFD techniques can be used with relative success for the problem of ship resistance prediction. This paper reports on the simulation of the flow around a typical catamaran hull by means of CFD computations. The numerical model used in the simulations was developed in full scale with the experimental model in order to eliminate any source of scale effects. The paper presents a discussion on grid configuration and an analysis of the performance of the numerical model in describing the characteristics of the in-between hulls flow. The results obtained were validated against experimental data.


2003 ◽  
Vol 9 (6) ◽  
pp. 411-418 ◽  
Author(s):  
Jean Schweitzer ◽  
Jeya Gandham

This article describes some of the computational fluid dynamics (CFD) work being done on three-element torque converters using a commercially available package CFX TASCflow. The article details some of the work done to validate CFD results and gives examples of ways in which CFD is used in the torque-converter design process. Based on the validation study, it is shown that CFD can be used as a design and analysis tool to make decisions about design direction. Use of CFD in torque converters is a developing field. Thus, more work needs to be done before the requirement of hardware to validate designs can be fully eliminated. This article demonstrates the confidence level in torque converter CFD and demonstrates how it can be used to assist torqueconverter design today.


2014 ◽  
Vol 13 (4) ◽  
pp. 057-065
Author(s):  
Wojciech Węgrzyński

In the paper the author presents some chosen methodologies used in the design process of natural smoke and heat ventilation systems and the use of Computational Fluid Dynamics (CFD) tools. Comparison of the performance of various systems was conducted on the basis of performed CFD analyses. The analysis was prepared with the use of ANSYS Fluent 14.5 package, with the use of RNG k-ε turbulence model. The results of analysis are presented, together with the additional design recommendations.


Sign in / Sign up

Export Citation Format

Share Document