A Continuum Based Three-Dimensional Modeling of Wind Turbine Blades

Author(s):  
Ahmed H. Bayoumy ◽  
Ayman A. Nada ◽  
Said M. Megahed

Accurate modeling of large wind turbine blades is an extremely challenging problem. This is due to their tremendous geometric complexity and the turbulent and unpredictable conditions in which they operate. In this paper, a continuum based three dimensional finite element model of an elastic wind turbine blade is derived using the absolute nodal coordinates formulation (ANCF). This formulation is very suitable for modeling of large-deformation, large-rotation structures like wind turbine blades. An efficient model of six thin plate elements is proposed for such blades with non-uniform, and twisted nature. Furthermore, a mapping procedure to construct the ANCF model of NACA (National Advisory Committee for Aeronautics) wind turbine blades airfoils is established to mesh the geometry of a real turbine blade. The complex shape of such blades is approximated using an absolute nodal coordinate thin plate element, to take the blades tapering and twist into account. Three numerical examples are presented to show the transient response of the wind turbine blades due to gravitational/aerodynamics forces. The simulation results are compared with those obtained using ANSYS code with a good agreement.

Author(s):  
Alka Gupta ◽  
Abdulrahman Alsultan ◽  
R. S. Amano ◽  
Sourabh Kumar ◽  
Andrew D. Welsh

Energy is the heart of today’s civilization and the demand seems to be increasing with our growing population. Alternative energy solutions are the future of energy, whereas the fossil-based fuels are finite and deemed to become extinct. The design of the wind turbine blade is the main governing factor that affects power generation from the wind turbine. Different airfoils, angle of twist and blade dimensions are the parameters that control the efficiency of the wind turbine. This study is aimed at investigating the aerodynamic performance of the wind turbine blade. In the present paper, we discuss innovative blade designs using the NACA 4412 airfoil, comparing them with a straight swept blade. The wake region was measured in the lab with a straight blade. All the results with different designs of blades were compared for their performance. A complete three-dimensional computational analysis was carried out to compare the power generation in each case for different wind speeds. It was found from the numerical analysis that the slotted blade yielded the most power generation among the other blade designs.


2016 ◽  
Vol 138 (5) ◽  
Author(s):  
Jeswin John ◽  
Donald W. Radford ◽  
Subhas Karan Venayagamoorthy ◽  
Paul R. Heyliger

The behaviors of tip displacement, maximum stress, and natural frequency of vibration as a function of blade length are investigated for extendable wind turbine blades. A three-dimensional linear elasticity finite-element model of the blade is used along with a typical profile and representative material properties. The quasi-linear response and free vibration behavior are investigated for a sequence of blade geometries. These estimates are intended to give approximate measures of expected changes in the elastic and dynamic field as the operating length changes and provide preliminary guidelines for this novel class of structure.


2016 ◽  
Vol 10 (5) ◽  
pp. 132 ◽  
Author(s):  
Sutrisno . ◽  
Prajitno . ◽  
Purnomo . ◽  
B.W. Setyawan

<p>The researches on the design of 3-D wind turbine blades have been received less attention so far even though 3-D blade products are widely sold. In the opposite, advanced researches in 3-D helicopter blade have been studied rigorously. Researches in wind turbine blade modeling are mostly assumed that blade span wise sections behaves as independent two dimensional (2-D) airfoils, implying that there is no exchange of momentum in the span wise direction. Further more flow visualization experiments are infrequently conducted.</p><p>The purpose of this study is to investigate the performance of 3-D wind turbine blade models with backward-forward swept and verify the flow patterns using flow visualization. In this research, the blade models are constructed based on the twist and chord distributions following Schmitz’s formula. Forward and backward swept are added to the wind turbine blades. It is hoped that the additional swept would enhance or diminish outward flow disturbance or stall development propagation on the span wise blade surfaces to give better blade design.</p><p>The performance of the 3-D wind turbine system models are measured by a torque meter, employing Prony’s braking system, and the 3-D flow patterns around the rotating blade models are investigated applying “tuft-visualization technique”, to study the appearance of laminar, separated and boundary layer flow patterns surrounding the 3-dimentional blade system.</p>For low speed wind turbines, Dumitrescu and Cardos (2011) have identified that stall spreads from the root of the rotating blade. In this study, it is found that for blades with (i) forward swept tip and backward swept root, the initial stall at the blade bottom would be amplified by concurrent strengthening flow due to  the backward swept root to create strong stall spreading outward, and therefore the blades gives lower performance. For blades with (ii) backward swept tip and forward swept root, the initial stall at the blade bottom would be weakened by opposite weakening flow due to the forward swept root, generate weak stall that tend to deteriorate. These blades have better performance.


2017 ◽  
Vol 11 (10) ◽  
pp. 189 ◽  
Author(s):  
Sutrisno Sutrisno ◽  
Deendarlianto Deendarlianto ◽  
Indarto Indarto ◽  
Sigit Iswahyudi ◽  
Muhammad Agung Bramantya ◽  
...  

The research on three dimensional (3-D) wind turbine blades has been introduced (Sutrisno, Prajitno, Purnomo, & B.W. Setyawan, 2016). In the current experiment, the 3-D wind turbine blades would be fitted with helicopter-like blade tips and additional fins to the blade hubs to demonstrate some laminarizing features. It was found that additional helicopter-like blade tip to the turbine blade creates strong laminar flows over the surface of the blade tips. Supplementary, finned hub, fitted to the blade body, creates rolled-up vortex flows, weakens the blade stall growth development, especially for blades at high-speed wind. A proposed mathematical form of modified lifting line model has been developed to pursue further 3-d blade development study of 3-d wind turbine blade. Rolled up vortex effects, developed by finned of the base hub, has been acknowledged could demolish the turbulent region, as well as laminarize the stall domain to intensify the induced wind turbine blade lift.


Author(s):  
Ahmed H. Bayoumy ◽  
Ayman A. Nada ◽  
Said M. Megahed

This paper describes the use of the Absolute Nodal Coordinate Formulation (ANCF) in modeling large-size wind turbine blades. An efficient procedure is developed for mapping NACA airfoil wind-turbine blades into ANCF thin plate models. The procedure concerns the wind turbine blade with non-uniform, twisted nature. As a result, the slope discontinuity problem arises and presents numerical errors in the dynamic simulation. This investigation illustrates a method for modeling slope discontinuity resulting from the variations of the cross sectional layouts across the blade. A method is developed and applied for the gradient-deficient thin plate element in order to account for structural discontinuity. The numerical results show a numerical convergence and satisfy the principle of work and energy in dynamics. The simulation results are compared with those obtained using ANSYS code with a good agreement.


2021 ◽  
Author(s):  
Alessio Castorrini ◽  
Paolo Venturini ◽  
Fabrizio Gerboni ◽  
Alessandro Corsini ◽  
Franco Rispoli

Abstract Rain erosion of wind turbine blades represents an interesting topic of study due to its non-negligible impact on annual energy production of the wind farms installed in rainy sites. A considerable amount of recent research works has been oriented to this subject, proposing rain erosion modelling, performance losses prediction, structural issues studies, etc. This work aims to present a new method to predict the damage on a wind turbine blade. The method is applied here to study the effect of different rain conditions and blade coating materials, on the damage produced by the rain over a representative section of a reference 5MW turbine blade operating in normal turbulence wind conditions.


2013 ◽  
Vol 284-287 ◽  
pp. 518-522
Author(s):  
Hua Wei Chi ◽  
Pey Shey Wu ◽  
Kami Ru Chen ◽  
Yue Hua Jhuo ◽  
Hung Yun Wu

A wind-power generation system uses wind turbine blades to convert the kinetic energy of wind to drive a generator which in turn yields electricity, the aerodynamic performance of the wind turbine blades has decisive effect on the cost benefit of the whole system. The aerodynamic analysis and the optimization of design parameters for the wind turbine blades are key techniques in the early stage of the development of a wind-power generation system. It influences the size selection of connecting mechanisms and the specification of parts in the design steps that follows. A computational procedure and method for aerodynamics optimization was established in this study for three-dimensional blades and the rotor design of a wind turbine. The procedure was applied to improving a previously studied 25kW wind turbine rotor design. Results show that the aerodynamic performance of the new three-dimensional blades has remarkable improvement after optimization.


2014 ◽  
Vol 1014 ◽  
pp. 124-127
Author(s):  
Zhi Qiang Xu ◽  
Jian Huang

Wind turbines consists of three key parts, namely, wind wheels (including blades, hub, etc.), cabin (including gearboxes, motors, controls, etc.) and the tower and Foundation. Wind turbine wheel is the most important part ,which is made up of blades and hubs. Blade has a good aerodynamic shape, which will produce aerodynamic in the airflow rotation, converting wind energy into mechanical energy, and then, driving the generator into electrical energy by gearbox pace. Wind turbine operates in the natural environment, their load wind turbine blades are more complex. Therefore load calculations and strength analysis for wind turbine design is very important. Wind turbine blades are core components of wind turbines, so understanding of their loads and dynamics by which the load on the wind turbine blade design is of great significance.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Bin Qu ◽  
Zhou Sun ◽  
Fang Feng ◽  
Yan Li ◽  
Guoqiang Tong ◽  
...  

This paper describes the method of preparing strong hydrophobic polypyrrole (PPy) on wind turbine blades. The water contact angle of strong hydrophobic PPy coatings was 127.2°. The strong hydrophobic PPy coatings exhibited excellent anti-icing properties. The maximum icing weight of strong hydrophobic PPy coating blade was almost 0.10 g while the maximum icing weight of no coating blade was found to be 26.13 g. The maximum icing thickness of a strong hydrophobic PPy coating blade was only 1.08 mm. The current research will provide a better technique to create anti-icing coatings on wind turbine blades and other outdoor equipment.


Author(s):  
Prenil Poulose ◽  
Zhong Hu

Strength evaluation and failure prediction on a modern composite wind turbine blade have been conducted using finite element analysis. A 3-dimensional finite element model has been developed. Stresses and deflections in the blade under extreme storm conditions have been investigated for different materials. The conventional wood design turbine blade has been compared with the advanced E-glass fiber and Carbon epoxy composite blades. Strength has been analyzed and compared for blades with different laminated layer stacking sequences and fiber orientations for a composite material. Safety design and failure prediction have been conducted based on the different failure criteria. The simulation error estimation has been evaluated. Simulation results have shown that finite element analysis is crucial for designing and optimizing composite wind turbine blades.


Sign in / Sign up

Export Citation Format

Share Document