Some Solutions of the Timoshenko Beam Equation for Short Pulse-Type Loading

1958 ◽  
Vol 25 (3) ◽  
pp. 379-385
Author(s):  
H. J. Plass

Abstract A collection of solutions to the Timoshenko beam equation is presented. Various types of support conditions and impact conditions are included. In every case the impact is assumed to be a pulse in the form of a half-sine wave. The results were found numerically, using the method of characteristics, except for one case, which was done in addition by the Laplace transform method, for check purposes. Agreement with experiment is good except for a pulse of duration comparable to the time required for the bending-type wave to travel a distance of one diameter. Discussion is included of the differences among the various cases studied.

1985 ◽  
Vol 52 (2) ◽  
pp. 439-445 ◽  
Author(s):  
T. J. Ross

The problem of a viscoelastic Timoshenko beam subjected to a transversely applied step-loading is solved using the Laplace transform method. It is established that the support shear force is amplified more than the support bending moment for a fixed-end beam when strain rate influences are accounted for implicitly in the viscoelastic constitutive formulation.


1958 ◽  
Vol 25 (4) ◽  
pp. 496-500
Author(s):  
J. C. Samuels ◽  
A. C. Eringen

Abstract The generalized Fourier analysis is applied to the damped Timoshenko beam equation to calculate the mean-square values of displacements and bending stress, resulting from purely random loading. Compared with the calculations, based on the classical beam theory, it was found that the displacement correlations of both theories were in excellent agreement. Moreover, the mean square of the bending stress, contrary to the results of the classical beam theory, was found to be convergent. Computations carried out with a digital computer are plotted for both theories.


1966 ◽  
Vol 33 (1) ◽  
pp. 218-219 ◽  
Author(s):  
W. F. Ames ◽  
J. F. Sontowski

The classical perturbation method—the expansion of a solution of an algebraic equation as a power series in a parameter—is extended to an expansion in several parameters. An example concerning the Timoshenko beam equation is used to illustrate the ideas. Advantages of the procedure are discussed in the light of this example.


1971 ◽  
Vol 38 (3) ◽  
pp. 591-594 ◽  
Author(s):  
G. M. Anderson

The general problem of Timoshenko beam analysis is solved using the Laplace transform method. Time-dependent boundary and normal loads are considered. It is established that the integrands of the inversion integrals are always single-valued for beams of finite length and modal solutions can always be obtained using the residue theorem.


Sign in / Sign up

Export Citation Format

Share Document