Microfluidics Underground: A Micro-Core Method for Pore Scale Analysis of Supercritical CO2 Reactive Transport in Saline Aquifers

2013 ◽  
Vol 135 (2) ◽  
Author(s):  
Phong Nguyen ◽  
Hossein Fadaei ◽  
David Sinton

Carbon sequestration in microporous geological formations is an emerging strategy for mitigating CO2 emissions from fossil fuel consumption. Injection of CO2 in carbonate reservoirs can change the porosity and permeability of the reservoir regions, along the CO2 plume migration path, due to CO2-brine-rock interactions. Carbon sequestration is effectively a microfluidic process over large scales, and can readily benefit from microfluidic tools and analysis methods. In this study, a micro-core method was developed to investigate the effect of CO2 saturated brine and supercritical CO2 injection, under reservoir temperature and pressure conditions of 8.4 MPa and 40 °C, on the microstructure of limestone core samples. Specifically, carbonate dissolution results in pore structure, porosity, and permeability changes. These changes were measured by X-ray microtomography (micro-CT), liquid permeability measurements, and chemical analysis. Chemical composition of the produced liquid analyzed by inductively coupled plasma-atomic emission spectrometer (ICP-AES) shows concentrations of magnesium and calcium in the produced liquid. Chemical analysis results are consistent with the micro-CT imaging and permeability measurements which all show high dissolution for CO2 saturated brine injection and very minor dissolution under supercritical CO2 injection. This work leverages established advantages of microfluidics in the new context of core-sample analysis, providing a simple core sealing method, small sample size, small volumes of injection fluids, fast characterization times, and pore scale resolution.

2017 ◽  
Vol 63 ◽  
pp. 150-157 ◽  
Author(s):  
Roman Pevzner ◽  
Milovan Urosevic ◽  
Dmitry Popik ◽  
Valeriya Shulakova ◽  
Konstantin Tertyshnikov ◽  
...  

2013 ◽  
Vol 129 (12) ◽  
pp. 701-706
Author(s):  
Takashi FUJII ◽  
Yuichi SUGAI ◽  
Kyuro SASAKI ◽  
Toshiyuki HASHIDA ◽  
Toshiyuki TOSHA ◽  
...  

Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5259
Author(s):  
Yuan-Heng Li ◽  
Chien-Hao Shen ◽  
Cheng-Yueh Wu ◽  
Bieng-Zih Hsieh

The purpose of this study is to reduce the risk of leakage of CO2 geological storage by injecting the dissolved CO2 solution instead of the supercritical CO2 injection. The reservoir simulation method is used in this study to evaluate the contributions of the different trapping mechanisms, and the safety index method is used to evaluate the risk of CO2 leakage. The function of the dissolved CO2 solution injection is performed by a case study of a deep saline aquifer. Two scenarios are designed in this study: the traditional supercritical CO2 injection and the dissolved CO2 solution injection. The contributions of different trapping mechanisms, plume migrations, and the risk of leakage are evaluated and compared. The simulation results show that the risk of leakage via a natural pathway can be decreased by the approach of injecting dissolved CO2 solution instead of supercritical CO2. The amount of the CO2 retained by the safe trapping mechanisms in the dissolved CO2 solution injection scenario is greater than that in the supercritical CO2 scenario. The process of CO2 mineralization in the dissolved CO2 solution injection scenario is also much faster than that in the supercritical CO2 scenario. Changing the injection fluid from supercritical CO2 to a dissolved CO2 solution can significantly increase the safety of the CO2 geological storage. The risk of CO2 leakage from a reservoir can be eliminated because the injected CO2 can be trapped totally by safe trapping mechanisms.


Sign in / Sign up

Export Citation Format

Share Document