Robust Filtering for Ammonia Coverage Estimation in Diesel Engine Selective Catalytic Reduction Systems

Author(s):  
Hui Zhang ◽  
Junmin Wang ◽  
Yue-Yun Wang

In this paper, we investigate the nonlinear observer designs to estimate the ammonia coverage ratio in the diesel engine selective catalytic reduction (SCR) systems. The ammonia coverage ratio is an important variable due to its critical role in the SCR NOx conversion and the ammonia slip. However, the ammonia coverage ratio cannot be directly measured by onboard sensors. Therefore, it is necessary to develop effective observers to estimate the ammonia coverage ratio online. Based on a three-state SCR model, we develop two nonlinear observers. The first one only employs the dynamics of the ammonia concentration. The structure and the algorithm are simple. But it is sensitive to the measurement noises and the uncertainties in the system parameters. The second one is a discrete-time smooth variable structure estimator which is robust to the measurement noises, the approximation error, and the system uncertainties. Both estimators are implemented on a full-vehicle simulation of the FTP75 test cycle. The simulation results have verified the theoretical analysis.

Author(s):  
Ming Feng Hsieh ◽  
Junmin Wang

This paper presents a diesel engine selective catalytic reduction (SCR) control design based on a novel model predictive control (MPC)-assisted approach, which utilizes the advantages of MPC while keeping the computation demand under an acceptable level. The SCR control problem is featured by the challenges of time delay, significant time-varying characteristics, and limited control authority. Based on the understanding of the SCR reactions, the NH3 surface coverage ratio was selected as the control objective. The proposed MPC-assisted method was compared with conventional controllers such as PID and linear MPC (LMPC). Simulation results exhibited that the MPC-assisted approach can achieve a SCR ammonia surface coverage ratio control with much smaller root mean square error compared to these of other controllers while maintaining a manageable computational demand, and in turn better control of tailpipe NOx and ammonia emissions.


Author(s):  
Ming Feng Hsieh ◽  
Junmin Wang

This paper presents an ammonia surface coverage ratio control approach based on the backstepping concept for diesel engine selective catalytic reduction (SCR) systems. SCR models with multiple cells connected in cascade provide more accurate representations of the actual SCR system dynamics by considering the spatial distribution. Control of SCR system ammonia coverage ratio is critically important and effective in terms of ensuring low tailpipe NOx and ammonia emissions. However, such a task is also very challenging primarily due to the nonlinearities of the SCR dynamics and limited ammonia injection control authority. Grounded in the understanding of the SCR nonlinear dynamic characteristics, a backstepping-based nonlinear control law is then proposed to regulate the ammonia surface coverage ratio of the last SCR cell in order to tightly control the tailpipe NOx and ammonia emissions. Lyapunov-based analyses show the stability of the designed control law. FTP75 test cycle simulation results based on a full-vehicle (including engine, chassis, and aftertreatment systems) model illustrated that, compared with a conventional PID controller, the nonlinear backstepping control law can more appropriately handle the SCR system dynamics and exhibits superior ammonia coverage ratio control capability.


2018 ◽  
Author(s):  
Z. Gerald Liu ◽  
Devin R. Berg ◽  
Thaddeus A. Swor ◽  
James J. Schauer‡

Two methods, diesel particulate filter (DPF) and selective catalytic reduction (SCR) systems, for controlling diesel emissions have become widely used, either independently or together, for meeting increasingly stringent emissions regulations world-wide. Each of these systems is designed for the reduction of primary pollutant emissions including particulate matter (PM) for the DPF and nitrogen oxides (NOx) for the SCR. However, there have been growing concerns regarding the secondary reactions that these aftertreatment systems may promote involving unregulated species emissions. This study was performed to gain an understanding of the effects that these aftertreatment systems may have on the emission levels of a wide spectrum of chemical species found in diesel engine exhaust. Samples were extracted using a source dilution sampling system designed to collect exhaust samples representative of real-world emissions. Testing was conducted on a heavy-duty diesel engine with no aftertreatment devices to establish a baseline measurement and also on the same engine equipped first with a DPF system and then a SCR system. Each of the samples was analyzed for a wide variety of chemical species, including elemental and organic carbon, metals, ions, n-alkanes, aldehydes, and polycyclic aromatic hydrocarbons, in addition to the primary pollutants, due to the potential risks they pose to the environment and public health. The results show that the DPF and SCR systems were capable of substantially reducing PM and NOx emissions, respectively. Further, each of the systems significantly reduced the emission levels of the unregulated chemical species, while the notable formation of new chemical species was not observed. It is expected that a combination of the two systems in some future engine applications would reduce both primary and secondary emissions significantly.


Sign in / Sign up

Export Citation Format

Share Document