Flocking of Multi-Agent Systems Using a Unified Optimal Control Approach

Author(s):  
Jianan Wang ◽  
Ming Xin

In this paper, the multi-agent flocking problem is investigated in a unified optimal control framework. The flocking characteristics, such as velocity alignment, navigation, cohesion, and collision/obstacle avoidance, are accomplished by formulating them into respective cost function terms. The resultant nonquadratic cost function poses a challenging optimal control problem. A novel inverse optimal control strategy is adopted to derive an analytical optimal control law. The optimality and asymptotic stability are proved and the distributed feedback control law only requires local information to achieve the flocking behaviors. Various simulation scenarios are used to demonstrate the effectiveness of the optimal flocking algorithm.

2020 ◽  
Vol 10 (7) ◽  
pp. 2419
Author(s):  
Minjeong Kim ◽  
Sungsu Park

This paper presents the optimal control approach to solve both Lambert’s problem and Gibbs’ method, which are commonly used for preliminary orbit determination. Lambert’s problem is reinterpreted with Hamilton’s principle and is converted to an optimal control problem. Various extended Lambert’s problems are formulated by modifying the weighting and constraint settings within the optimal control framework. Furthermore, Gibbs’ method is also converted to an extended Lambert’s problem with two position vectors and one orbit energy with the help of the proposed orbital energy computation algorithm. The proposed extended Lambert’s problem and Gibbs’ method are numerically solved with the Lobatto pseudospectral method, and their accuracies are verified by numerical simulations.


2001 ◽  
Vol 11 (03) ◽  
pp. 857-863 ◽  
Author(s):  
EDGAR N. SANCHEZ ◽  
JOSE P. PEREZ ◽  
GUANRONG CHEN

This Letter suggests a new approach to generating chaos via dynamic neural networks. This approach is based on a recently introduced methodology of inverse optimal control for nonlinear systems. Both Chen's chaotic system and Chua's circuit are used as examples for demonstration. The control law is derived to force a dynamic neural network to reproduce the intended chaotic attractors. Computer simulations are included for illustration and verification.


Sign in / Sign up

Export Citation Format

Share Document