scholarly journals Biomechanics of Cardiac Electromechanical Coupling and Mechanoelectric Feedback

2014 ◽  
Vol 136 (2) ◽  
Author(s):  
Emily R. Pfeiffer ◽  
Jared R. Tangney ◽  
Jeffrey H. Omens ◽  
Andrew D. McCulloch

Cardiac mechanical contraction is triggered by electrical activation via an intracellular calcium-dependent process known as excitation–contraction coupling. Dysregulation of cardiac myocyte intracellular calcium handling is a common feature of heart failure. At the organ scale, electrical dyssynchrony leads to mechanical alterations and exacerbates pump dysfunction in heart failure. A reverse coupling between cardiac mechanics and electrophysiology is also well established. It is commonly referred as cardiac mechanoelectric feedback and thought to be an important contributor to the increased risk of arrhythmia during pathological conditions that alter regional cardiac wall mechanics, including heart failure. At the cellular scale, most investigations of myocyte mechanoelectric feedback have focused on the roles of stretch-activated ion channels, though mechanisms that are independent of ionic currents have also been described. Here we review excitation–contraction coupling and mechanoelectric feedback at the cellular and organ scales, and we identify the need for new multicellular tissue-scale model systems and experiments that can help us to obtain a better understanding of how interactions between electrophysiological and mechanical processes at the cell scale affect ventricular electromechanical interactions at the organ scale in the normal and diseased heart.

2021 ◽  
Vol 271 ◽  
pp. 03008
Author(s):  
Yiqiu Zhou

The contraction of the heart is dependent on a process named the excitation-contraction coupling (E-C coupling). In hypertrophy and failing heart models, the expression, phosphorylation and function of key calcium handling proteins involved in E-C coupling are altered. It’s important to figure out the relationship changes between calcium channel activity and calcium release from sarcoplasmic reticulum (SR). This review will therefore focus on novel components of E-C coupling dysfunction in hypertrophy and failing heart, such as L-type Ca2+ channel (LCC), ryanodine receptor type-2 channel (RyR2) and SR Ca ATPase (SERCA), and how these molecular modifications altered excitation-contraction coupling. A lot of literature was well read and sorted. Recent findings in E-C coupling during hypertrophy and heart failure were focused on. Most importantly, the electrophysiological and signal pathway data was carefully analyzed. This review summarizes key principles and highlights novel aspects of E-C coupling changes during hypertrophy and heart failure models. Although LCC activity changed little, the loss of notch in action potential, reduced Ca2+ transient amplitude and desynchronized Ca2+ sparks resulted in a decreased contraction strength in hypertrophy and heart failure models. What’s more, L-type Ca2+ current becomes ineffective in triggering RyR2 Ca2+ release from SR and the SR uptake is reduced in some models. It has great meanings in understanding the E-C coupling changes during different heart diseases. Theses novel changes suggest potential therapeutic approaches for certain types of hypertrophy and heart failure.


2021 ◽  
Vol 129 (Suppl_1) ◽  
Author(s):  
Troy Hendrickson ◽  
William Perez ◽  
Vincent Provasek ◽  
Francisco J Altamirano

Patients with Autosomal Dominant Polycystic Kidney disease (ADPKD) have multiple cardiovascular manifestations, including increased susceptibility to arrhythmias. Mutations in polycystin-1 (PC1) encoding gene accounts for 85% cases of ADPKD, whereas mutations in polycystin-2 (PC2) only accounts for 15%. In kidney cells, PC1 interacts with PC2 to form a protein complex at the primary cilia to regulate calcium influx via PC2. However, cardiomyocytes are non-ciliated cells and the role of both PC1 and PC2 in atrial cardiomyocytes remains unknown. We have previously demonstrated that PC1 regulates action potentials and calcium handling to fine-tune ventricular cardiomyocyte contraction. Here, we hypothesize that PC1 regulates action potentials and calcium handling in atrial cardiomyocytes independent of PC2 actions. To test this hypothesis, we differentiated human induced pluripotent stem cells (iPSC) into atrial cardiomyocytes (iPSC-aCM) using previously published protocols. To determine the contribution of PC1/PC2 in atrial excitation-contraction coupling, protein expression was knocked down utilizing specific siRNA constructs, for each protein, or a universal control siRNA transfected using lipofectamine RNAiMAX. We measured action potentials using the potentiometric dye FluoVolt and intracellular calcium with Fura-2 AM or Fluo-4. Changes in fluorescence were monitored using a multiwavelength IonOptix system. iPSC-aCM were paced at 2 Hz to synchronize the beating pattern using field electrical stimulation. Our data shows that PC1 ablation significantly decreased action potential duration at 50% and 80% of repolarization, by 24% and 23%, respectively. Moreover, we observed that PC1 knockdown significantly reduced calcium transient amplitude elicited by field electrical stimulation without changes in calcium transient decay. Interestingly, PC2 knockdown did not modify calcium transients in atrial cardiomyocytes (iPSC-aCM). Our data suggest that PC1 regulates atrial excitation-contraction coupling independent of PC2 actions. This study warrants further investigation into atrial dysfunction in ADPKD patients with PC1 mutations.


1999 ◽  
Vol 84 (5) ◽  
pp. 571-586 ◽  
Author(s):  
Raimond L. Winslow ◽  
Jeremy Rice ◽  
Saleet Jafri ◽  
Eduardo Marbán ◽  
Brian O’Rourke

Sign in / Sign up

Export Citation Format

Share Document