An Experimental Study on Heat Transfer Surface Area of Wavy-Fin Heat Exchangers

Author(s):  
Masoud Asadi ◽  
Gongnan Xie

Effects of wavy-fins surface area on thermal-hydraulic performance of a heat exchanger have been observed. First, a new method to calculate the heat transfer area of wavy-fin surfaces is introduced. The results show that the proposed method is accurate enough to be used in the analysis of heat exchanger performance. One of the important aspects of this method is that it is a direct method compared with the experimental method introduced by Kays and London, and thus might be a strong tool in the optimization of heat exchangers based on different objective functions. Effects of some nondimensional parameters, such as amplitude-to-wavelength ratio, fin space ratio, and channel cross-section ratio on the heat transfer characteristics and pressure drop are also investigated.

Author(s):  
Seon-hwa Kim ◽  
Jae-jun Lee ◽  
Young-min Oh ◽  
Sang-hoon Lee ◽  
Jae-sik Kim

The MCFC system of BOP (Balance of Plant) is contained various mechanical equipments. One of the equipments of the heat exchangers is important component for efficiency and cost. In MCFC system, several heat exchangers are used according to the application. Most typical heat exchanger is the humidifier in BOP for MCFC, which is named for the humidifier because it is to preheat the fuel and water so that a reactor will convert some of the incoming fuel to hydrogen. Then, hot side fluid service is used the exhausted gas from the fuel cell and cold side fluid service is the fuel and water. The operation temperature range is about 25∼500 Celsius Degree.[1] This heat exchanger has the problems of multiphase fluid and phase change heat transfer. So it is necessary to analyze the heat transfer characteristics and to propose the reasonable design methodology for the humidifier. In this study, the thermal characteristic for the humidifier is estimated by using commercial tool of heat exchanger design, rating and simulation. Also this study presents the results for test facility of fabrication and for testing.


2011 ◽  
Vol 354-355 ◽  
pp. 684-690 ◽  
Author(s):  
Yu Kun Lu ◽  
Kai Zhao ◽  
Xiao Gang Wang ◽  
Hai Feng Liu

The flow and heat transfer characteristics of a micro heat exchanger structure are studied with the method of contrasting experiment and Fluent numerical simulation. Considering the micro heat exchanger to meet the work requirements of conditions, there is some optimization of the structure redundancy. The optimal model of micro heat exchanger is obtained by the numerical simulation and comparative analysis on seven different kinds of micro heat exchangers.


2021 ◽  
pp. 76-76
Author(s):  
Sakthivel Perumal ◽  
Vijayan Venkatraman ◽  
Rajkumar Sivanraju ◽  
Addisalem Mekonnen ◽  
Sathish Thanikodi ◽  
...  

Nowadays ensure the performance of heat exchanger is one of the toughest roles in industries. In this work focused on improve the performance of shell and tube heat exchangers by reducing the pressure drop as well as raising the overall heat transfer. This work considered as a different nanoparticles such as Aluminium oxide (Al2O3), Silicon dioxide (SiO2), Titanium oxide (TiO2) and Zirconium dioxide (ZrO2) to form a nanofluids. This nanofluids possesses high thermal conductivity by using of this increase the heat transfer rate in shell and tube heat exchanger. The selected nanofluids are compared to base fluid based on the thermophysical properties as well as heat transfer characteristics. All the heat transfer characteristics are improved by applying of nanofluids particularly higher results are obtained with using of TiO2 and Al2O3 compared to SiO2 and ZrO2. Mixing of nanoparticles increased in terms of volume percentage it will be increases the all Heat transfer characteristics as well as performance of the heat exchanger.


Author(s):  
Muhammad Ansab Ali ◽  
Tariq S. Khan ◽  
Ebrahim Al Hajri ◽  
Fadi Khasawneh

Abstract The present work demonstrates the use of manifold microchannel technology in conjunction with conventional macrogeometries to achieve superior performance compared to traditional heat exchangers. A novel tubular manifold heat exchanger is designed using three-dimensional (3D) printed manifold and conventional double enhanced tube. The experiments are performed using water as the working fluid and the manifold side heat transfer coefficient up to 9538 Wm−2K−1 with a low flowrate of 4.25 lpm is achieved with as low pressure drop as 323 Pa. A comparison with respect to thermal hydraulic performance of the results with a plate heat exchanger shows clear advantage of the proposed exchanger. Overall, microscale heat transfer characteristics are obtained by using relatively simple and economical fabrication techniques.


Author(s):  
Agarwal A. ◽  
◽  
Molwane O.B ◽  
Pitso I ◽  
◽  
...  

Compact heat exchangers are used in various industries due to its good efficiency and compactness. The fluid used in heat exchanger has significant effect in augmentation of heat transfer characteristics of heat exchangers. In recent years, researchers have shown keen interest in uses of nanofluids for heat exchangers due to its good thermo-physical properties. The present study explores the application of ZnO /water nanofluid on compact heat exchanger with circular tubes using techniques of Computational Fluid Dynamics (CFD). The CAD model is developed in Creo design software and CFD analysis is conducted using ANSYS CFX. The volume concentration of nanoparticles used for analysis are .02,.04 and .07. The CFD analysis is conducted for both laminar and turbulent flow regime using SSG shear stress turbulence model. The temperature distribution, Nusselt number and pressure plots are generated to determine heat transfer characteristics. The results are encouraging, and significant enhancement of heat transfer is achieved using ZnO/water nanofluid. However, the pumping power requirement also increased with increase in nanoparticle concentration.


Sign in / Sign up

Export Citation Format

Share Document