Turbulent Transport at High Reynolds Numbers in an Inertial Confinement Fusion Context

2014 ◽  
Vol 136 (9) ◽  
Author(s):  
J. Melvin ◽  
P. Rao ◽  
R. Kaufman ◽  
H. Lim ◽  
Y. Yu ◽  
...  

Mix is a critical input to hydro simulations used in modeling chemical or nuclear reaction processes in fluids. It has been identified as a possible cause of performance degradation in inertial confinement fusion (ICF) targets. Mix contributes to numerical solution uncertainty through its dependence on turbulent transport coefficients, themselves uncertain and even controversial quantities. These coefficients are a central object of study in this paper, carried out in an Richtmyer–Meshkov unstable circular two-dimensional (2D) geometry suggested by an ICF design. We study a pre-turbulent regime and a fully developed regime. The former, at times between the first shock passage and reshock, is characterized by mixing in the form of interpenetrating but coherent fingers and the latter, at times after reshock, has fully developed turbulent structures. This paper focuses on the scaling of spatial averages of turbulence coefficients under mesh refinement and under variation of molecular viscosity [i.e., Reynolds number (Re)]. We find that the coefficients scale under mesh refinement with a power of spatial grid spacing derived from the Kolmogorov 2/3 law, especially after reshock. We document the dominance of turbulent over molecular transport and convergence of the turbulent transport coefficients in the infinite Re limit. The transport coefficients do not coincide for the pre- and post-reshock flow regimes, with significantly stronger transport coefficients after reshock.

2011 ◽  
Vol 18 (5) ◽  
pp. 056306 ◽  
Author(s):  
Flavien Lambert ◽  
Vanina Recoules ◽  
Alain Decoster ◽  
Jean Clérouin ◽  
Michael Desjarlais

Author(s):  
C. W. Price ◽  
E. F. Lindsey

Thickness measurements of thin films are performed by both energy-dispersive x-ray spectroscopy (EDS) and x-ray fluorescence (XRF). XRF can measure thicker films than EDS, and XRF measurements also have somewhat greater precision than EDS measurements. However, small components with curved or irregular shapes that are used for various applications in the the Inertial Confinement Fusion program at LLNL present geometrical problems that are not conducive to XRF analyses but may have only a minimal effect on EDS analyses. This work describes the development of an EDS technique to measure the thickness of electroless nickel deposits on gold substrates. Although elaborate correction techniques have been developed for thin-film measurements by x-ray analysis, the thickness of electroless nickel films can be dependent on the plating bath used. Therefore, standard calibration curves were established by correlating EDS data with thickness measurements that were obtained by contact profilometry.


2020 ◽  
Vol 36 ◽  
pp. 100749 ◽  
Author(s):  
R.E. Olson ◽  
R.J. Leeper ◽  
S.H. Batha ◽  
R.R. Peterson ◽  
P.A. Bradley ◽  
...  

2021 ◽  
Vol 28 (3) ◽  
pp. 032713
Author(s):  
Dongguo Kang ◽  
Huasen Zhang ◽  
Shiyang Zou ◽  
Wudi Zheng ◽  
Shaoping Zhu ◽  
...  

2021 ◽  
Vol 92 (7) ◽  
pp. 073505
Author(s):  
T. J. Awe ◽  
L. Perea ◽  
J. C. Hanson ◽  
A. J. York ◽  
D. W. Johnson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document