Reliability-Based Vehicle Safety Assessment and Design Optimization of Roadway Radius and Speed Limit in Windy Environments

2014 ◽  
Vol 136 (8) ◽  
Author(s):  
Jaekwan Shin ◽  
Ikjin Lee

This paper presents a reliability-based analysis of road vehicle accidents and the optimization of roadway radius and speed limit design based on vehicle dynamics, mainly focusing on windy environments. The performance functions are formulated as failure modes of vehicle rollover and sideslip and are defined on a finite set of basic variables with probabilistic characteristics, so-called random variables. The random variables are vehicle speed, steer angle, tire–road friction coefficient, road bank angle, and wind speed. The probability of accident was evaluated using the first-order reliability method (FORM) and numerical studies were conducted using a single-unit truck model. The analysis demonstrates that wind is a significant factor when assessing vehicle safety on roads, and probabilistic studies such as reliability-based design optimization (RBDO) are necessarily required to enhance vehicle safety in windy environments. Accordingly, design optimization of roadway radius and speed limit was conducted, and new designs were proposed satisfying the target reliability. This study suggests that probabilistic mechanics and theory can be of value for analysis and design of wind-related vehicle safety.

Author(s):  
Xiaoping Du

Reliability-based design optimization is much more computationally expensive than deterministic design optimization. To alleviate the computational demand, the First Order Reliability Method (FORM) is usually used in reliability-based design. Since FORM requires a nonlinear transformation from non-normal random variables to normal random variables, the nonlinearity of a constraint function may increase. As a result, the transformation may lead to a large error in reliability calculation. In order to improve accuracy, a new reliability-based design method with Saddlepoint Approximation is proposed in this work. The strategy of sequential optimization and reliability assessment is employed where the reliability analysis is decoupled from deterministic optimization. The accurate First Order Saddlepoint method is used for reliability analysis in the original random space without any transformation, and the chance of increasing nonlinearity of a constraint function is therefore eliminated. The overall reliability-based design is conducted in a sequence of cycles of deterministic optimization and reliability analysis. In each cycle, the percentile value of the constraint function corresponding to the required reliability is calculated with the Saddlepoint Approximation at the optimal point of the deterministic optimization. Then the reliability analysis results are used to formulate a new deterministic optimization model for the next cycle. The solution process converges within a few cycles. The demonstrative examples show that the proposed method is more accurate and efficient than the reliability-based design with FORM.


2005 ◽  
Vol 297-300 ◽  
pp. 1882-1887
Author(s):  
Tae Hee Lee ◽  
Jung Hun Yoo

In practical design applications, most design variables such as thickness, diameter and material properties are not deterministic but stochastic numbers that can be represented by their mean values with variances because of various uncertainties. When the uncertainties related with design variables and manufacturing process are considered in engineering design, the specified reliability of the design can be achieved by using the so-called reliability based design optimization. Reliability based design optimization takes into account the uncertainties in the design in order to meet the user requirement of the specified reliability while seeking optimal solution. Reliability based design optimization of a real system becomes now an emerging technique to achieve reliability, robustness and safety of the design. It is, however, well known that reliability based design optimization can often have so multiple local optima that it cannot converge into the specified reliability. To overcome this difficulty, barrier function approach in reliability based design optimization is proposed in this research and feasible solution with specified reliability index is always provided if a feasible solution is available. To illustrate the proposed formulation, reliability based design optimization of a bracket design is performed. Advanced mean value method and first order reliability method are employed for reliability analysis and their optimization results are compared with reliability index approach based on the accuracy and efficiency.


Author(s):  
Liu Du ◽  
Kyung K. Choi

Structural analysis and design optimization have recently been extended to consider various uncertainties. If the statistical data for the uncertainties are sufficient to construct the input distribution function, the uncertainties can be treated as random variables and RBDO is used; otherwise, the uncertainties can be treated as fuzzy variables and PBDO is used. However, many structural design problems include both uncertainties with sufficient data and uncertainties with insufficient data. For these problems, RBDO will yield an unreliable design since the distribution functions of uncertainties are not believable. On the other hand, treating the random variables as fuzzy variables and invoking PBDO may yield too conservative design with a higher optimum cost. This paper proposes a new design formulation using the performance measure approach (PMA). For the inverse analysis, this paper proposes a new most probable/possible point (MPPP) search method called maximal failure search (MFS), which is an integration of the enhanced hybrid mean value method (HMV+) and maximal possibility search (MPS) method. Some mathematical and physical examples are used to demonstrate the proposed inverse analysis method and design formulation.


Author(s):  
Ning-Cong Xiao ◽  
Libin Duan ◽  
Zhangchun Tang

Calculating probability of failure and reliability sensitivity for a structural system with dependent truncated random variables and multiple failure modes efficiently is a challenge mainly due to the complicated features and intersections for the multiple failure modes, as well as the correlated performance functions. In this article, a new surrogate-model-based reliability method is proposed for structural systems with dependent truncated random variables and multiple failure modes. Copula functions are used to model the correlation for truncated random variables. A small size of uniformly distribution samples in the supported intervals is generated to cover the entire uncertainty space fully and properly. An accurate surrogate model is constructed based on the proposed training points and support vector machines to approximate the relationships between the inputs and system responses accurately for almost the entire uncertainty space. The approaches to calculate probability of failure and reliability sensitivity for structural systems with truncated random variables and multiple failure modes based on the constructed surrogate model are derived. The accuracy and efficiency of the proposed method are demonstrated using two numerical examples.


2018 ◽  
Vol 10 (9) ◽  
pp. 168781401879333 ◽  
Author(s):  
Zhiliang Huang ◽  
Tongguang Yang ◽  
Fangyi Li

Conventional decoupling approaches usually employ first-order reliability method to deal with probabilistic constraints in a reliability-based design optimization problem. In first-order reliability method, constraint functions are transformed into a standard normal space. Extra non-linearity introduced by the non-normal-to-normal transformation may increase the error in reliability analysis and then result in the reliability-based design optimization analysis with insufficient accuracy. In this article, a decoupling approach is proposed to provide an alternative tool for the reliability-based design optimization problems. To improve accuracy, the reliability analysis is performed by first-order asymptotic integration method without any extra non-linearity transformation. To achieve high efficiency, an approximate technique of reliability analysis is given to avoid calculating time-consuming performance function. Two numerical examples and an application of practical laptop structural design are presented to validate the effectiveness of the proposed approach.


2011 ◽  
Vol 133 (9) ◽  
Author(s):  
Yoojeong Noh ◽  
Kyung K. Choi ◽  
Ikjin Lee ◽  
David Gorsich ◽  
David Lamb

For reliability-based design optimization (RBDO), generating an input statistical model with confidence level has been recently proposed to offset inaccurate estimation of the input statistical model with Gaussian distributions. For this, the confidence intervals for the mean and standard deviation are calculated using Gaussian distributions of the input random variables. However, if the input random variables are non-Gaussian, use of Gaussian distributions of the input variables will provide inaccurate confidence intervals, and thus yield an undesirable confidence level of the reliability-based optimum design meeting the target reliability βt. In this paper, an RBDO method using a bootstrap method, which accurately calculates the confidence intervals for the input parameters for non-Gaussian distributions, is proposed to obtain a desirable confidence level of the output performance for non-Gaussian distributions. The proposed method is examined by testing a numerical example and M1A1 Abrams tank roadarm problem.


Sign in / Sign up

Export Citation Format

Share Document