A Computationally Efficient Multichannel Active Road Noise Control System

Author(s):  
Jie Duan ◽  
Mingfeng Li ◽  
Teik C. Lim ◽  
Ming-Ran Lee ◽  
Ming-Te Cheng ◽  
...  

A multichannel active noise control (ANC) system has been developed for a vehicle application, which employs loudspeakers to reduce the low-frequency road noise. Six accelerometers were attached to the vehicle structure to provide the reference signal for the feedforward control strategy, and two loudspeakers and two microphones were applied to attenuate acoustic noise near the headrest of the driver's seat. To avoid large computational burden caused by the conventional time-domain filtered-x least mean square (FXLMS) algorithm, a time-frequency domain FXLMS (TF-FXLMS) algorithm is proposed. The proposed algorithm calculates the gradient estimate and filtered reference signal in the frequency domain to reduce the computational requirement, while also updates the control signals in the time domain to avoid delay. A comprehensive computational complexity analysis is conducted to demonstrate that the proposed algorithm requires significantly lower computational cost as compared to the conventional FXLMS algorithm.

2019 ◽  
Vol 29 (03) ◽  
pp. 1950014
Author(s):  
Diego Mendez ◽  
David Arevalo ◽  
Diego Patino ◽  
Eduardo Gerlein ◽  
Ricardo Quintana

Filtered-x Least Mean Squares (FxLMS) is an algorithm commonly used for Active Noise Control (ANC) systems in order to cancel undesired acoustic waves from a sound source. There is a small number of hardware designs reported in the literature, that in turn only use one reference signal, one error signal and one output control signal. In this paper, it is proposed a 3-dimensional hardware-based version of the widely used FxLMS algorithm, using one reference microphone, 18 error microphones, one output and a FIR filter of 400[Formula: see text] order. The FxLMS algorithm was implemented in a Xilinx Artix 7 FPGA running at 25 MHz, which allowed to update the filter coefficients in 32.44[Formula: see text] s. The main idea behind this work is to propose a pipelined parallelized architecture to achieve processing times faster than real time for the filter coefficients update. The main contribution of this work is not the ANC technique itself, but rather the proposed hardware implementation that utilizes integer arithmetic, which provided an acceptable error when benchmarked with a software implementation. This parallel system allows a scalable implementation as an advantage of using FPGA without compromising the computational cost and, consequently, the latency.


2014 ◽  
Vol 136 (4) ◽  
Author(s):  
Jie Duan ◽  
Mingfeng Li ◽  
Teik C. Lim ◽  
Ming-Ran Lee ◽  
Ming-Te Cheng ◽  
...  

Conventional active control of road noise inside a vehicle cabin generally uses a pure feedforward control system with the conventional filtered-x least mean square (FXLMS) algorithm. While it can yield satisfactory noise reduction when the reference signal is well correlated with the targeted noise, in practice, it is not always possible to obtain a reference signal that is highly coherent with a broadband response typically seen in road noise. To address this problem, an active noise control (ANC) system with a combined feedforward–feedback controller is proposed to improve the performance of attenuating road noise. To take full advantage of the feedforward control, a subband (SFXLMS) algorithm, which can achieve more noise attenuation over a broad frequency range, is used to replace the conventional FXLMS algorithm. Meanwhile, a feedback controller, based on internal model control (IMC) architecture, is introduced to reduce the road noise components that have strong response but are poorly correlated with the reference signals. The proposed combined feedforward–feedback ANC system has been demonstrated by a simulation model with six reference accelerometers, two control loudspeakers and one error microphone, using actual data measured from a test vehicle. Results show that the performance of the proposed combined controller is significantly better than using either a feedforward controller only or a feedback controller only, and is able to achieve about 4 dBA of overall sound pressure level reduction.


Electronics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1504 ◽  
Author(s):  
Stefano Gaiotto ◽  
Antonino Laudani ◽  
Gabriele Maria Lozito ◽  
Francesco Riganti Fulginei

In this paper, a novel algorithm with high computational efficiency is proposed for the filter adaptation in a feedforward active noise control system. The proposed algorithm Zero Forcing Block Adaptive Filter (ZF-BAF) performs filter adaptation on a block-by-block basis in the frequency domain. Filtering is performed in the time domain on a sample-by-sample basis. Working in the frequency domain permits us to get sub-linear complexity, whereas filtering in the time domain minimizes the latency. Furthermore, computational burden is tunable to meet specific requirements about adaptation speed and processing load. No other parameter tuning according to the working condition is required. Computer simulations, performed in different realistic cases against other high-performing time and frequency-domain algorithms, show that achievable performances are comparable, or even better, with those of the algorithms perfectly tuned for each specific case. Robustness exhibited in the tests suggests that performances are expected to be even better in a wide range of real cases where it is impossible to know a priori how to tune the algorithms.


2019 ◽  
Vol 67 (5) ◽  
pp. 350-362
Author(s):  
J. M. Ku ◽  
W. B. Jeong ◽  
C. Hong

The low-frequency noise generated by the vibration of the compressor in the machinery room of refrigerators is considered as annoying sound. Active noise control is used to reduce this noise without any change in the design of the compressor in the machinery room. In configuring the control system, various signals are measured and analyzed to select the reference signal that best represents the compressor noise. As the space inside the machinery room is small, the size of a speaker is limited, and the magnitude of the controller transfer function is designed to be small at low frequencies, the controller uses FIR filter structure converged by the FxLMS algorithm using the pre-measured time signal. To manage the convergence speed for each frequency, the frequency-weighting function is applied to FxLMS algorithm. A series of measurements are performed to design the controller and to evaluate the control performance. After the control, the sound power transmitted by the refrigerator is reduced by 9 dB at the first dominant frequency (408 Hz in this case) and 3 dB at the second dominant frequency (459 Hz here), and the overall sound power decreases by 2.6 dB. Through this study, an active control system for the noise generated by refrigerator compressors is established.


Sign in / Sign up

Export Citation Format

Share Document