The Effect of Varying Fiber Characteristics on the Simultaneous Measurement of Heat and Momentum Transfer to Flowing Fiber Suspensions

2014 ◽  
Vol 137 (1) ◽  
Author(s):  
S. N. Kazi ◽  
G. G. Duffy ◽  
X. D. Chen

Heat transfer and pressure loss measurements were obtained simultaneously for a range of wood pulp fiber suspensions flowing in a pipeline. Data were obtained over a selected range of flow rates and temperatures from a specially built flow loop. It was found that the magnitude of the heat transfer coefficient was above water at equivalent experimental conditions and at very low fiber concentrations, but progressively decreased until it was below water at slightly higher concentrations. Similar trends were obtained for the pressure drop measurements obtained simultaneously, showing good correspondence between the two sets of data. It was found that both heat and momentum transfer are affected in a closely similar way by varying fiber properties, such as fiber length, fiber flexibility, fiber chemical and mechanical treatment, the variation of fibers from different parts of the tree, as well as the different pulping methods used to liberate the fibers from the wood structure. Drag reduction increased and heat transfer coefficient decreased with increasing fiber flexibility as found by previous workers.

Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6473
Author(s):  
Mohammadmahdi Talebi ◽  
Sahba Sadir ◽  
Manfred Kraut ◽  
Roland Dittmeyer ◽  
Peter Woias

Determination of local heat transfer coefficient at the interface of channel wall and fluid was the main goal of this experimental study in microchannel flow boiling domain. Flow boiling heat transfer to DI-water in a single microchannel with a rectangular cross section was experimentally investigated. The rectangular cross section dimensions of the experimented microchannel were 1050 μm × 500 μm and 1500 μm × 500 μm. Experiments under conditions of boiling were performed in a test setup, which allows the optical and local impedance measurements of the fluids by mass fluxes of 22.1 kg·m−2·s−1 to 118.8 kg·m−2·s−1 and heat fluxes in the range of 14.7 kW·m−2 to 116.54 kW·m−2. The effect of the mass flux, heat flux, and flow pattern on flow boiling local heat transfer coefficient and pressure drop were investigated. Experimental data compared to existing correlations indicated no single correlation of good predictive value. This was concluded to be the case due to the instability of flow conditions on one hand and the variation of the flow regimes over the experimental conditions on the other hand. The results from the local impedance measurements in correlation to the optical measurements shows the flow regime variation at the experimental conditions. From these measurements, useful parameters for use in models on boiling like the 3-zone model were shown. It was shown that the sensing method can shed a precise light on unknown features locally in slug flow such as residence time of each phases, bubble frequency, and duty cycle.


Author(s):  
Leyuan Yu ◽  
Dong Liu

As a promising candidate for heat transfer fluids in advanced cooling technologies, nanofluids have been studied extensively in the past decade. Despite the tremendous research efforts, it is still unclear if and how the presence of dispersed nanoparticles alters the thermal transport and leads to enhanced thermal performance of nanofluids. An experimental investigation was conducted to explore the single-phase forced convection of Al2O3-water nanofluids in a circular minichannel with 1.09 mm inner diameter. The Reynolds number studied ranges from approximately 600 to 2300. The friction factor and convective heat transfer coefficient were measured for nanofluids with volume concentrations of up to 2%. The effects of nanoparticle concentration and flow rate on the local and average heat transfer coefficient as well as Nusselt number are examined. It was found that, once the thermophysical properties of the nanofluids are properly accounted for, the established pressure drop and heat transfer correlations can offer satisfactory predictions of the single-phase thermal transport of nanofluids under the experimental conditions considered in this study.


Author(s):  
S. W. Moon ◽  
S. C. Lau

Dimpled surfaces may be considered for heat transfer enhancement in internal cooling of gas turbine airfoils. In this study, convective heat transfer and pressure drop for turbulent airflow in a square channel with a dimpled wall were examined. Experiments were conducted to determine the average heat transfer coefficient on the dimpled wall and the overall pressure drop across the channel, for nine concave and cylindrical dimples with various diameters and depths, and for Reynolds numbers (based on the channel hydraulic diameter) between 10,000 and 65,000. For the concave and cylindrical dimple configurations studied, the dimples were found to enhance the heat transfer coefficient by 70% (1.7 times) to over three times the value for fully developed turbulent flow through a smooth tube, with increase of the overall pressure drop of over four times. For both the concave and cylindrical dimples, heat transfer was enhanced more when the dimples covered a larger portion of the surface of the wall. The cylindrical dimples caused higher overall heat transfer coefficient (based on the projected area) and lower pressure drop than the concave dimples with the same diameters and depths. Thus, cylindrical dimple configuration may be a better alternative than concave dimples in enhancing heat transfer, for the experimental conditions and dimple configurations investigated. Further experiments are recommended to determine if cylindrical dimples of other dimensions also give higher thermal performances than concave dimples of the same dimensions, subjected to other flow and thermal boundary conditions, such as irregular channels with or without rotation.


Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6325
Author(s):  
Chang-Hyo Son ◽  
Nam-Wook Kim ◽  
Jung-In Yoon ◽  
Sung-Hoon Seol ◽  
Joon-Hyuk Lee

This study investigated the evaporative heat transfer coefficient and pressure drop characteristics of R-1234yf in a horizontal tube with an inner diameter of 6.95 mm under various experimental conditions. The heat transfer coefficient increased with an increase in quality but showed a sharp decrease in the high-quality area. In addition, the heat transfer coefficient increased as the mass flux, heat flux, and saturation temperature increased. Although R-1234yf and R-134a presented similar heat transfer coefficients, that of R-134a was higher. The pressure drop increased with an increase in the quality and mass flux but decreased with an increase in the saturation temperature. The pressure drop of R-134a was larger than that of R-1234yf. In light of the flow pattern diagram by Taitel and Dukler, most of the experiments were included in the annular flow region, and some regions showed intermittent and stratified corrugated flow regions. Kandlikar’s heat transfer coefficient correlation provided the best prediction for the experimental database, with approximately 84% of the predicted data within ±30%. Moreno Quibén and Thome’s equation for pressure drop predicted approximately 88.71% of the data within ±30%.


Author(s):  
Osamu Kawanami ◽  
Shih-Che Huang ◽  
Kazunari Kawakami ◽  
Itsuro Honda ◽  
Yousuke Kawashima ◽  
...  

In the present study, a detailed investigation of flow boiling in a transparent heated microtube was performed. The transparent heated tube was made by electroless gold plating method. The enclosed gas-liquid interface could be clearly recognized through the tube wall, and the inner wall temperature measurement and direct heating of the film were simultaneously conducted by using the tube. The experimental conditions were: tube diameter 1 mm, mass velocity 100 kg/m2s, inlet liquid sub-cooling 20 K and heat flux up to 384 kW/m2 in the open system. Flow fluctuation was minimized by employing a twin plunger pump. Among our experimental results, we observed a high-frequency fluctuation of the inner wall temperature and a sharp peak for the heat transfer coefficient with high heat flux conditions, which have not been reported in previous experiments. This abrupt increase in the heat transfer coefficient coincided with a slight rapid axial growth of an elongated bubble found in the observation of the flow behavior. Hence, in low heat flux conditions, the fluctuations of temperature and heat transfer coefficient are strongly suppressed except for the instances when there is no bubble in the tube.


1996 ◽  
Vol 118 (2) ◽  
pp. 381-387 ◽  
Author(s):  
Y. Parlatan ◽  
N. E. Todreas ◽  
M. J. Driscoll

Friction factor and heat transfer coefficient behavior are investigated experimentally under mixed convection conditions in aiding and opposing transition and turbulent flow of water (4000 < Re < 9000 and Bo < 1.3). With increasing buoyancy influence, the friction factor increases by as much as 25 percent in aiding flow, while it decreases by as much as 25 percent in opposing flow (GrΔT < 7·106). The effects of temperature-dependent viscosity variations are also included in the analysis (0.5 < μw/μb < 1.0). When they are taken into account, the increase in the friction factor due to buoyancy forces alone in upward flow becomes larger. The friction factor behavior is compared with previous studies in the literature. Our experimental data agree well with some of the previous experiments described in the literature. The heat transfer coefficient was also measured under the same experimental conditions; the heat transfer coefficient monotonically increases in opposing flow by as much as 40 percent, and first decreases by 50 percent and then recovers in aiding flow with increasing buoyancy influence.


TAPPI Journal ◽  
2015 ◽  
Vol 14 (7) ◽  
pp. 441-450
Author(s):  
HENRIK WALLMO, ◽  
ULF ANDERSSON ◽  
MATHIAS GOURDON ◽  
MARTIN WIMBY

Many of the pulp mill biorefinery concepts recently presented include removal of lignin from black liquor. In this work, the aim was to study how the change in liquor chemistry affected the evaporation of kraft black liquor when lignin was removed using the LignoBoost process. Lignin was removed from a softwood kraft black liquor and four different black liquors were studied: one reference black liquor (with no lignin extracted); two ligninlean black liquors with a lignin removal rate of 5.5% and 21%, respectively; and one liquor with maximum lignin removal of 60%. Evaporation tests were carried out at the research evaporator in Chalmers University of Technology. Studied parameters were liquor viscosity, boiling point rise, heat transfer coefficient, scaling propensity, changes in liquor chemical composition, and tube incrustation. It was found that the solubility limit for incrustation changed towards lower dry solids for the lignin-lean black liquors due to an increased salt content. The scaling obtained on the tubes was easily cleaned with thin liquor at 105°C. It was also shown that the liquor viscosity decreased exponentially with increased lignin outtake and hence, the heat transfer coefficient increased with increased lignin outtake. Long term tests, operated about 6 percentage dry solids units above the solubility limit for incrustation for all liquors, showed that the heat transfer coefficient increased from 650 W/m2K for the reference liquor to 1500 W/m2K for the liquor with highest lignin separation degree, 60%.


Sign in / Sign up

Export Citation Format

Share Document