Study on a Vapor-Feed Air-Breathing Direct Methanol Fuel Cell Assisted by a Catalytic Combustor

2015 ◽  
Vol 12 (1) ◽  
Author(s):  
Wei Yuan ◽  
Hong-Rong Xia ◽  
Jin-Yi Hu ◽  
Zhao-Chun Zhang ◽  
Yong Tang

Feeding vaporized methanol to the direct methanol fuel cell (DMFC) helps reduce the effects of methanol crossover (MCO) and facilitates the use of high-concentration or neat methanol so as to enhance the energy density of the fuel cell system. This paper reports a novel system design coupling a catalytic combustor with a vapor-feed air-breathing DMFC. The combustor functions as an assistant heat provider to help transform the liquid methanol into vapor phase. The feasibility of this method is experimentally validated. Compared with the traditional electric heating mode, the operation based on this catalytic combustor results in a higher cell performance. Results indicate that the values of methanol concentration and methanol vapor chamber (MVC) temperature both have direct effects on the cell performance, which should be well optimized. As for the operation of the catalytic combustor, it is necessary to optimize the number of capillary wicks and also catalyst loading. In order to fast trigger the combustion reaction, an optimal oxygen feed rate (OFR) must be used. The required amount of oxygen to sustain the reaction can be far lower than that for methanol ignition in the starting stage.

2009 ◽  
Vol 194 (2) ◽  
pp. 674-682 ◽  
Author(s):  
Zhaoxia Hu ◽  
Takahiro Ogou ◽  
Makoto Yoshino ◽  
Otoo Yamada ◽  
Hidetoshi Kita ◽  
...  

2013 ◽  
Vol 10 (5) ◽  
Author(s):  
K. Scott ◽  
S. Pilditch ◽  
M. Mamlouk

A steady-state, isothermal, one-dimensional model of a direct methanol proton exchange membrane fuel cell (PEMFC), with a polybenzimidazole (PBI) membrane, was developed. The electrode kinetics were represented by the Butler–Volmer equation, mass transport was described by the multicomponent Stefan–Maxwell equations and Darcy's law, and the ionic and electronic resistances described by Ohm's law. The model incorporated the effects of temperature and pressure on the open circuit potential, the exchange current density, and diffusion coefficients, together with the effect of water transport across the membrane on the conductivity of the PBI membrane. The influence of methanol crossover on the cathode polarization is included in the model. The polarization curves predicted by the model were validated against experimental data for a direct methanol fuel cell (DMFC) operating in the temperature range of 125–175 °C. There was good agreement between experimental and model data for the effect of temperature and oxygen/air pressure on cell performance. The fuel cell performance was relatively poor, at only 16 mW cm−2 peak power density using low concentrations of methanol in the vapor phase.


Sign in / Sign up

Export Citation Format

Share Document