Hinge-Free Compliant Mechanism Design Via the Topological Level-Set

2015 ◽  
Vol 137 (3) ◽  
Author(s):  
Anirudh Krishnakumar ◽  
Krishnan Suresh

The objective of this paper is to introduce and demonstrate a new method for the topology optimization of compliant mechanisms. The proposed method relies on exploiting the topological derivative, and exhibits numerous desirable properties including: (1) the mechanisms are hinge-free; (2) mechanisms with different geometric and mechanical advantages (GA and MA) can be generated by varying a single control parameter; (3) a target volume fraction need not be specified, instead numerous designs, of decreasing volume fractions, are generated in a single optimization run; and (4) the underlying finite element stiffness matrices are well-conditioned. The proposed method and implementation are illustrated through numerical experiments in 2D and 3D.

Author(s):  
Krishnan Suresh

The objective of this paper is to introduce and demonstrate a new method for the topology optimization of compliant mechanisms. The proposed method relies on exploiting the topological derivative, and it exhibits numerous desirable properties including: (1) the mechanisms are hinge-free, (2) mechanisms with different geometric and mechanical advantages can be generated by varying a single control parameter, (3) a target volume fraction need not specified; instead numerous designs, of decreasing volume fractions, are generated in a single optimization run, and (4) the underlying finite element stiffness matrices are well-conditioned, permitting the use of high-performance iterative solvers. The proposed method and implementation are illustrated through numerical experiments in 2D and 3D.


2001 ◽  
Author(s):  
Hima Maddisetty ◽  
Mary Frecker

Abstract Piezoceramic actuators have gained widespread use due to their desirable qualities of high force, high bandwidth, and high energy density. Compliant mechanisms can be designed for maximum stroke amplification of piezoceramic actuators using topology optimization. In this paper, the mechanical efficiency and other performance metrics of such compliant mechanism/actuator systems are studied. Various definitions of efficiency and other performance metrics of actuators with amplification mechanisms from the literature are reviewed. These metrics are then applied to two compliant mechanism example problems and the effect of the stiffness of the external load is investigated.


2015 ◽  
Vol 137 (9) ◽  
Author(s):  
Lin Cao ◽  
Allan T. Dolovich ◽  
Wenjun (Chris) Zhang

This paper proposes a topology optimization framework to design compliant mechanisms with a mixed mesh of both beams and flexure hinges for the design domain. Further, a new type of finite element, i.e., super flexure hinge element, was developed to model flexure hinges. Then, an investigation into the effects of the location and size of a flexure hinge in a compliant lever explains why the point-flexure problem often occurs in the resulting design via topology optimization. Two design examples were presented to verify the proposed technique. The effects of link widths and hinge radii were also investigated. The results demonstrated that the proposed meshing scheme and topology optimization technique facilitate the rational decision on the locations and sizes of beams and flexure hinges in compliant mechanisms.


2017 ◽  
Vol 9 (5) ◽  
Author(s):  
Chih-Hsing Liu ◽  
Guo-Feng Huang ◽  
Ta-Lun Chen

This paper presents an evolutionary soft-add topology optimization method for synthesis of compliant mechanisms. Unlike the traditional hard-kill or soft-kill approaches, a soft-add scheme is proposed in this study where the elements are equivalent to be numerically added into the analysis domain through the proposed approach. The objective function in this study is to maximize the output displacement of the analyzed compliant mechanism. Three numerical examples are provided to demonstrate the effectiveness of the proposed method. The results show that the optimal topologies of the analyzed compliant mechanisms are in good agreement with previous studies. In addition, the computational time can be greatly reduced by using the proposed soft-add method in the analysis cases. As the target volume fraction in topology optimization for the analyzed compliant mechanism is usually below 30% of the design domain, the traditional methods which remove unnecessary elements from 100% turn into inefficient. The effect of spring stiffness on the optimized topology has also been investigated. It shows that higher stiffness values of the springs can obtain a clearer layout and minimize the one-node hinge problem for two-dimensional cases. The effect of spring stiffness is not significant for the three-dimensional case.


Author(s):  
Ditske J. B. A. de Lange ◽  
Matthijs Langelaar ◽  
Just L. Herder

This paper presents the design of a grasping instrument for minimally invasive surgery. Due to its small dimensions a compliant mechanism seems promising. To obtain force feedback, the positive stiffness of the compliant grasper must be statically balanced by a negative-stiffness compensation mechanism. For the design of compliant mechanisms, topology optimization can be used. The goal of this paper is to investigate the applicability of topology optimization to the design of a compliant laparoscopic grasper and particularly a compliant negative-stiffness compensation mechanism. In this study, the problem is subdivided in the grasper part and the compensation part. In the grasper part the deflection at the tip of the grasper is optimized. This results in a design that has a virtually linear force-displacement characteristic that forms the input for the compensation part. In the compensation part the difference between the force-displacement characteristic of the grasper part and the characteristic of the compensation part is minimized. An optimization problem is formulated enabling a pre-stress to be incorporated, which is required to obtain the negative stiffness in the compensation part. We can conclude that topology optimization is a promising approach in the field of statically balanced compliant mechanism design, even though there is great scope improvement of the method.


2010 ◽  
Vol 132 (11) ◽  
Author(s):  
Hong Zhou

The hybrid discretization model for topology optimization of compliant mechanisms is introduced in this paper. The design domain is discretized into quadrilateral design cells. Each design cell is further subdivided into triangular analysis cells. This hybrid discretization model allows any two contiguous design cells to be connected by four triangular analysis cells whether they are in the horizontal, vertical, or diagonal direction. Topological anomalies such as checkerboard patterns, diagonal element chains, and de facto hinges are completely eliminated. In the proposed topology optimization method, design variables are all binary, and every analysis cell is either solid or void to prevent the gray cell problem that is usually caused by intermediate material states. Stress constraint is directly imposed on each analysis cell to make the synthesized compliant mechanism safe. Genetic algorithm is used to search the optimum and to avoid the need to choose the initial guess solution and conduct sensitivity analysis. The obtained topology solutions have no point connection, unsmooth boundary, and zigzag member. No post-processing is needed for topology uncertainty caused by point connection or a gray cell. The introduced hybrid discretization model and the proposed topology optimization procedure are illustrated by two classical synthesis examples of compliant mechanisms.


1999 ◽  
Vol 121 (3) ◽  
pp. 424-429 ◽  
Author(s):  
M. Goldfarb ◽  
J. E. Speich

This paper describes the design of a unique revolute flexure joint, called a split-tube flexure, that enables (lumped compliance) compliant mechanism design with a considerably larger range-of-motion than a conventional thin beam flexure, and additionally provides significantly better multi-axis revolute joint characteristics. Conventional flexure joints utilize bending as the primary mechanism of deformation. In contrast, the split-tube flexure joint incorporates torsion as the primary mode of deformation, and contrasts the torsional properties of a thin-walled open-section member with the bending properties of that member to obtain desirable joint behavior. The development of this joint enables the development of compliant mechanisms that are quite compliant along kinematic axes, extremely stiff along structural axes, and are capable of kinematically well-behaved large motions.


Author(s):  
Hong Zhou ◽  
Nitin M. Dhembare

The design domain of a synthesized compliant mechanism is discretized into quadrilateral design cells in both hybrid and quadrilateral discretization models. However, quadrilateral discretization model allows for point connection between two diagonal design cells. Hybrid discretization model completely eliminates point connection by subdividing each quadrilateral design cell into triangular analysis cells and connecting any two contiguous quadrilateral design cells using four triangular analysis cells. When point connection is detected and suppressed in quadrilateral discretization, the local topology search space is dramatically reduced and slant structural members are serrated. In hybrid discretization, all potential local connection directions are utilized for topology optimization and any structural members can be smooth whether they are in the horizontal, vertical or diagonal direction. To compare the performance of hybrid and quadrilateral discretizations, the same design and analysis cells, genetic algorithm parameters, constraint violation penalties are employed for both discretization models. The advantages of hybrid discretization over quadrilateral discretization are obvious from the results of two classical synthesis examples of compliant mechanisms.


Sign in / Sign up

Export Citation Format

Share Document