Piezoelectric Actuator Performance Metrics and Relation to Compliant Mechanism Design

Author(s):  
Hima Maddisetty ◽  
Mary Frecker

Abstract Piezoceramic actuators have gained widespread use due to their desirable qualities of high force, high bandwidth, and high energy density. Compliant mechanisms can be designed for maximum stroke amplification of piezoceramic actuators using topology optimization. In this paper, the mechanical efficiency and other performance metrics of such compliant mechanism/actuator systems are studied. Various definitions of efficiency and other performance metrics of actuators with amplification mechanisms from the literature are reviewed. These metrics are then applied to two compliant mechanism example problems and the effect of the stiffness of the external load is investigated.

Author(s):  
Hima Maddisetty ◽  
Mary Frecker

A topology optimization method is developed to design a piezoelectric ceramic actuator together with a compliant mechanism coupling structure for dynamic applications. The objective is to maximize the mechanical efficiency with a constraint on the capacitance of the piezoceramic actuator. Examples are presented to demonstrate the effect of considering dynamic behavior compared to static behavior, and the effect of sizing the piezoceramic actuator on the optimal topology and the capacitance of the actuator element. Comparison studies are also presented to illustrate the effect of damping, external spring stiffness, and driving frequency. The optimal topology of the compliant mechanism is shown to be dependent on the driving frequency, the external spring stiffness, and if the piezoelectric actuator element is considered as design or non-design. At high driving frequencies, it was found that the dynamically optimized structure is very near resonance.


2015 ◽  
Vol 137 (9) ◽  
Author(s):  
Lin Cao ◽  
Allan T. Dolovich ◽  
Wenjun (Chris) Zhang

This paper proposes a topology optimization framework to design compliant mechanisms with a mixed mesh of both beams and flexure hinges for the design domain. Further, a new type of finite element, i.e., super flexure hinge element, was developed to model flexure hinges. Then, an investigation into the effects of the location and size of a flexure hinge in a compliant lever explains why the point-flexure problem often occurs in the resulting design via topology optimization. Two design examples were presented to verify the proposed technique. The effects of link widths and hinge radii were also investigated. The results demonstrated that the proposed meshing scheme and topology optimization technique facilitate the rational decision on the locations and sizes of beams and flexure hinges in compliant mechanisms.


2004 ◽  
Vol 126 (6) ◽  
pp. 975-983 ◽  
Author(s):  
Hima Maddisetty ◽  
Mary Frecker

A topology optimization method is developed to design a piezoelectric ceramic actuator together with a compliant mechanism coupling structure for dynamic applications. The objective is to maximize the mechanical efficiency with a constraint on the capacitance of the piezoceramic actuator. Examples are presented to demonstrate the effect of considering dynamic behavior compared to static behavior and the effect of sizing the piezoceramic actuator on the optimal topology and the capacitance of the actuator element. Comparison studies are also presented to illustrate the effect of damping, external spring stiffness, and driving frequency. The optimal topology of the compliant mechanism is shown to be dependent on the driving frequency, the external spring stiffness, and whether the piezoelectric actuator element is considered design or nondesign. At high driving frequencies, it was found that the dynamically optimized structure is very near resonance.


Author(s):  
Martin L. Culpepper ◽  
Soohyung Kim

In general, compliant mechanisms are single-state devices, meaning there is a one-to-one relationship between the inputs (actuation) and outputs (mechanism motion). This is particularly troublesome in precision mechanisms which offer limited flexibility in performance characteristics for high cost. In this paper we demonstrate a method which was proposed in earlier work (2002) to make a six-axis compliant mechanism with reconfigurable performance characteristics. The mechanism was synthesized using CoMeT, a compliant mechanism design tool, and optimized via FEA simulation. Experimental results show that (1) mechanism transmission ratio can be reconfigured between negative and positive numbers (2) that dynamic mode shapes may be changed and (3) that natural frequencies may be independently reconfigured. A means to handle the competing material requirements of large range and high-bandwidth is briefly presented.


Author(s):  
Ditske J. B. A. de Lange ◽  
Matthijs Langelaar ◽  
Just L. Herder

This paper presents the design of a grasping instrument for minimally invasive surgery. Due to its small dimensions a compliant mechanism seems promising. To obtain force feedback, the positive stiffness of the compliant grasper must be statically balanced by a negative-stiffness compensation mechanism. For the design of compliant mechanisms, topology optimization can be used. The goal of this paper is to investigate the applicability of topology optimization to the design of a compliant laparoscopic grasper and particularly a compliant negative-stiffness compensation mechanism. In this study, the problem is subdivided in the grasper part and the compensation part. In the grasper part the deflection at the tip of the grasper is optimized. This results in a design that has a virtually linear force-displacement characteristic that forms the input for the compensation part. In the compensation part the difference between the force-displacement characteristic of the grasper part and the characteristic of the compensation part is minimized. An optimization problem is formulated enabling a pre-stress to be incorporated, which is required to obtain the negative stiffness in the compensation part. We can conclude that topology optimization is a promising approach in the field of statically balanced compliant mechanism design, even though there is great scope improvement of the method.


2015 ◽  
Vol 137 (3) ◽  
Author(s):  
Anirudh Krishnakumar ◽  
Krishnan Suresh

The objective of this paper is to introduce and demonstrate a new method for the topology optimization of compliant mechanisms. The proposed method relies on exploiting the topological derivative, and exhibits numerous desirable properties including: (1) the mechanisms are hinge-free; (2) mechanisms with different geometric and mechanical advantages (GA and MA) can be generated by varying a single control parameter; (3) a target volume fraction need not be specified, instead numerous designs, of decreasing volume fractions, are generated in a single optimization run; and (4) the underlying finite element stiffness matrices are well-conditioned. The proposed method and implementation are illustrated through numerical experiments in 2D and 3D.


Author(s):  
Shawn Canfield ◽  
Mary I. Frecker

Abstract The focus of this paper is on designing compliant mechanism amplifiers for piezoelectric actuators using a topology optimization approach. Two optimization formulations are developed: one in which the overall stroke amplification or geometric advantage (GA) is maximized, and another where the mechanical efficiency (ME) of the amplifier is maximized. Two solution strategies are used, Sequential Linear Programming (SLP) and an Optimality Criteria method, and results are compared with respect to computation time and mechanism performance. Design examples illustrate the characteristics of both problem formulations, and physical prototypes have been fabricated as proof of concept. An automated detail design procedure has also been developed which allows the topology optimization results obtained in MATLAB to be directly translated into a neutral 3-D solid geometry format for import into other CAE programs.


Author(s):  
John Sessions ◽  
Nathan Pehrson ◽  
Kyler Tolman ◽  
Jonathan Erickson ◽  
David Fullwood ◽  
...  

One of the challenges often encountered in compliant mechanism design is managing material selection given the need to meet multiple constraints. Many methods have been offered previously to systematically facilitate that decision process. However, these methods struggle to incorporate a systematic method for material selection in multi-functional compliant mechanisms. This work seeks to address this gap by generically implementing a new Ashby-based material selection and design method for compliant mechanisms with multi constraint design criteria. To help demonstrate the method, the design of an electrically conductive lamina emergent torsion (LET) joint used for a back-packable solar array is explored. The methodology described here can be used to create other compliant mechanism performance metrics to address the design of specific compliant mechanisms.


2010 ◽  
Vol 132 (11) ◽  
Author(s):  
Hong Zhou

The hybrid discretization model for topology optimization of compliant mechanisms is introduced in this paper. The design domain is discretized into quadrilateral design cells. Each design cell is further subdivided into triangular analysis cells. This hybrid discretization model allows any two contiguous design cells to be connected by four triangular analysis cells whether they are in the horizontal, vertical, or diagonal direction. Topological anomalies such as checkerboard patterns, diagonal element chains, and de facto hinges are completely eliminated. In the proposed topology optimization method, design variables are all binary, and every analysis cell is either solid or void to prevent the gray cell problem that is usually caused by intermediate material states. Stress constraint is directly imposed on each analysis cell to make the synthesized compliant mechanism safe. Genetic algorithm is used to search the optimum and to avoid the need to choose the initial guess solution and conduct sensitivity analysis. The obtained topology solutions have no point connection, unsmooth boundary, and zigzag member. No post-processing is needed for topology uncertainty caused by point connection or a gray cell. The introduced hybrid discretization model and the proposed topology optimization procedure are illustrated by two classical synthesis examples of compliant mechanisms.


Sign in / Sign up

Export Citation Format

Share Document