Analysis of Heat Conduction in a Heterogeneous Material by a Multiple-Scale Averaging Method

2015 ◽  
Vol 137 (7) ◽  
Author(s):  
James White

In order to better manage computational requirements in the study of thermal conduction with short-scale heterogeneous materials, one is motivated to arrange the thermal energy equation into an accurate and efficient form with averaged properties. This should then allow an averaged temperature solution to be determined with a moderate computational effort. That is the topic of this paper as it describes the development using multiple-scale analysis of an averaged thermal energy equation based on Fourier heat conduction for a heterogeneous material with isotropic properties. The averaged energy equation to be reported is appropriate for a stationary or moving solid and three-dimensional heat flow. Restrictions are that the solid must display its heterogeneous properties over short spatial and time scales that allow averages of its properties to be determined. One distinction of the approach taken is that all short-scale effects, both moving and stationary, are combined into a single function during the analytical development. The result is a self-contained form of the averaged energy equation. By eliminating the need for coupling the averaged energy equation with external local problem solutions, numerical solutions are simplified and made more efficient. Also, as a result of the approach taken, nine effective averaged thermal conductivity terms are identified for three-dimensional conduction (and four effective terms for two-dimensional conduction). These conductivity terms are defined with two types of averaging for the component material conductivities over the short-scales and in terms of the relative proportions of the short-scales. Numerical results are included and discussed.

2016 ◽  
Vol 138 (6) ◽  
Author(s):  
James White

Numerical solution of heat conduction in a heterogeneous material with small spatial and time scales can lead to excessive compute times due to the dense computational grids required. This problem is avoided by averaging the energy equation over the small-scales, which removes the appearance of the short spatial and time scales while retaining their effect on the average temperature. Averaging does, however, increase the complexity of the resulting thermal energy equation by introducing mixed spatial derivatives and six different averaged conductivity terms for three-dimensional analysis. There is a need for a numerical method that efficiently and accurately handles these complexities as well as the other details of the averaged thermal energy equation. That is the topic of this paper as it describes a numerical solution for the averaged thermal energy equation based on Fourier conduction reported recently in the literature. The solution, based on finite difference techniques that are second-order time-accurate and noniterative, is appropriate for three-dimensional time-dependent and steady-state analysis. Speed of solution is obtained by spatially factoring the scheme into an alternating direction sequence at each time level. Numerical stability is enhanced by implicit algorithms that make use of the properties of tightly banded matrices. While accurately accounting for the nonlinearity introduced into the energy equation by temperature-dependent properties, the numerical solution algorithm requires only the consideration of linear systems of algebraic equations in advancing the solution from one time level to the next. Computed examples are included and compared with those for a homogeneous material.


Author(s):  
Simona Di Nino ◽  
Angelo Luongo

AbstractThe aeroelastic behavior of a planar prismatic visco-elastic structure, subject to a turbulent wind, flowing orthogonally to its plane, is studied in the nonlinear field. The steady component of wind is responsible for a Hopf bifurcation occurring at a threshold critical value; the turbulent component, which is assumed to be a small harmonic perturbation of the former, is responsible for parametric excitation. The interaction between the two bifurcations is studied in a three-dimensional parameter space, made of the two wind amplitudes and the frequency of the turbulence. Aeroelastic forces are computed by the quasi-static theory. A one-D.O.F dynamical system, drawn by a Galerkin projection of the continuous model, is adopted. The multiple scale method is applied, to get a two-dimensional bifurcation equation. A linear stability analysis is carried out to determine the loci of periodic and quasi-periodic bifurcations. Limit cycles and tori are computed by exact, asymptotic, and numerical solutions of the bifurcation equations. Numerical results are obtained for a sample structure, and compared with finite-difference solutions of the original partial differential equation of motion.


2016 ◽  
Vol 33 (1) ◽  
pp. 65-75 ◽  
Author(s):  
M. R. Talaee ◽  
V. Sarafrazi

AbstractThis paper is devoted to the analytical solution of three-dimensional hyperbolic heat conduction equation in a finite solid medium with rectangular cross-section under time dependent and non-uniform internal heat source. The closed form solution of both Fourier and non-Fourier profiles are introduced with Eigen function expansion method. The solution is applied for simple simulation of absorption of a continues laser in biological tissue. The results show the depth of laser absorption in tissue and considerable difference between the Fourier and Non-Fourier temperature profiles. In addition the solution can be applied as a verification branch for other numerical solutions.


2018 ◽  
Vol 70 (2) ◽  
pp. 432-443
Author(s):  
K.R. Kadam ◽  
S.S. Banwait

Purpose Different groove angles are used to study performance characteristics of two-axial groove journal bearing. In this study two grooves are located at ±90º to the load line. The various angles of grooves have been taken as 10° to 40° in the interval of 5°. Different equations such as Reynolds equation, three-dimensional energy equation and heat conduction equation have been solved using finite element method and finite difference method. Pressure distribution in fluid is found by using Reynolds equation. The three-dimensional energy equation is used for temperature distribution in the fluid film and bush. One-dimensional heat conduction equation is used for finding temperature in axial direction for journal. There is a very small effect of groove angle on film thickness, eccentricity ratio and pressure. There is a drastic change in attitude angle and side flow. Result shows that there is maximum power loss at large groove angle. So the smaller groove angle is recommended for two-axial groove journal bearing. Design/methodology/approach The finite element method is used for solving Reynolds equation for pressure distribution in fluid. The finite difference method is adopted for finding temperature distribution in bush, fluid and journal. Findings Pressure distribution in fluid is found out. Temperature distribution in bush, fluid and journal is found out. There is a very small effect of groove angle on film thickness, eccentricity ratio and pressure. Research limitations/implications The groove angle used is from 10 to 40 degree. The power loss is more when angle of groove increases, so smaller groove angle is recommended for this study. Practical implications The location of groove angle predicts the distribution of pressure and temperature in journal bearing. It will show the performance characteristics. ±90° angle we will prefer that will get before manufacturing of bearing. Social implications Due to this study, we will get predict how the pressure and temperature distribute in the journal. It will give the running condition of bearing as to at what speed and load we will get the maximum temperature and pressure in the bearing. Originality/value The finite element method is used for solving the Reynolds equation. Three-dimensional energy equation is solved using the finite difference method. Heat conduction equation is also solved for journal. The C language is used. The code is developed in C language. There are different equations which depend on each other. The temperature is dependent on pressure viscosity of fluid, etc. so C code is preferred.


2018 ◽  
Vol 387 ◽  
pp. 157-165 ◽  
Author(s):  
M. Idrees Afridi ◽  
Muhammad Qasim ◽  
Oluwole Daniel Makinde

In this study we examined the entropy generation in the three-dimensional flow of nanofluid with graphene nanoparticles. Viscous heating function is added in the energy equation to study fluid frictional effects on entropy generation. The modeled equations are converted into ordinary differential equations using appropriate dimensionless quantities. Shooting technique is implemented to acquire numerical solutions. The numerical solutions are also obtained by using Matlab built-in boundary value solver bvp4c for the validation of our numerical code. The obtained results reveal that they are in good correlation. The obtained numerical results are represented by various graphs and illustrated in great detail.


Author(s):  
Sheng Yu-ming ◽  
Li Chao ◽  
Xia Ming-yao ◽  
Zou Jin-feng

Abstract In this study, elastoplastic model for the surrounding rock of axisymmetric circular tunnel is investigated under three-dimensional (3D) principal stress states. Novel numerical solutions for strain-softening surrounding rock were first proposed based on the modified 3D Hoek–Brown criterion and the associated flow rule. Under a 3D axisymmetric coordinate system, the distributions for stresses and displacement can be effectively determined on the basis of the redeveloped stress increment approach. The modified 3D Hoek–Brown strength criterion is also embedded into finite element software to characterize the yielding state of surrounding rock based on the modified yield surface and stress renewal algorithm. The Euler implicit constitutive integral algorithm and the consistent tangent stiffness matrix are reconstructed in terms of the 3D Hoek–Brown strength criterion. Therefore, the numerical solutions and finite element method (FEM) models for the deep buried tunnel under 3D principal stress condition are presented, so that the stability analysis of surrounding rock can be conducted in a direct and convenient way. The reliability of the proposed solutions was verified by comparison of the principal stresses obtained by the developed numerical approach and FEM model. From a practical point of view, the proposed approach can also be applied for the determination of ground response curve of the tunnel, which shows a satisfying accuracy compared with the measuring data.


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1223
Author(s):  
Max Tönsmann ◽  
Philip Scharfer ◽  
Wilhelm Schabel

Convective Marangoni instabilities in drying polymer films may induce surface deformations, which persist in the dry film, deteriorating product performance. While theoretic stability analyses are abundantly available, experimental data are scarce. We report transient three-dimensional flow field measurements in thin poly(vinyl acetate)-methanol films, drying under ambient conditions with several films exhibiting short-scale Marangoni convection cells. An initial assessment of the upper limit of thermal and solutal Marangoni numbers reveals that the solutal effect is likely to be the dominant cause for the observed instabilities.


Sign in / Sign up

Export Citation Format

Share Document