Electrochemical Characterization of a High-Temperature Proton Exchange Membrane Fuel Cell Using Doped-Poly Benzimidazole as Solid Polymer Electrolyte

2015 ◽  
Vol 12 (3) ◽  
Author(s):  
S. A. Grigoriev ◽  
N. V. Kuleshov ◽  
A. S. Grigoriev ◽  
P. Millet

A high-temperature proton exchange membrane (PEM) fuel cell using H3PO4-doped poly benzimidazole (PBI) as solid polymer electrolyte has been developed and tested. The influences of operating temperature (between 130 and 170 °C), operating pressure (between 0 and 2 bar), and air flow rate on the performances of the fuel cell have been measured. A maximum power density of ca. 200 mW/cm2 has been measured. The existence of an optimum air flow rate (expressed in oxygen stoichiometric ratio) has been put into evidence. It allows an increase of the fuel cell voltage from 250 mV up to ca. 400 mV at 0.4 A/cm2.

2015 ◽  
Vol 3 (16) ◽  
pp. 8847-8854 ◽  
Author(s):  
Zhibin Guo ◽  
Ruijie Xiu ◽  
Shanfu Lu ◽  
Xin Xu ◽  
Shichun Yang ◽  
...  

A novel submicro-pore containing proton exchange membrane is designed and fabricated for application in high-temperature fuel cells.


2021 ◽  
Vol 7 ◽  
pp. 1374-1384 ◽  
Author(s):  
Taiming Huang ◽  
Wei Wang ◽  
Yao Yuan ◽  
Jie Huang ◽  
Xi Chen ◽  
...  

2014 ◽  
Vol 246 ◽  
pp. 63-67 ◽  
Author(s):  
Huaneng Su ◽  
Ting-Chu Jao ◽  
Sivakumar Pasupathi ◽  
Bernard Jan Bladergroen ◽  
Vladimir Linkov ◽  
...  

2020 ◽  
Author(s):  
Peng Cheng ◽  
Chasen Tongsh ◽  
Jinqiao Liang ◽  
Zhi Liu ◽  
Qing Du ◽  
...  

Abstract In this study, an experimental study has been performed to investigate the effect of in-plane distribution of Pt and Nafion in membrane electrode assembly (MEA) on proton exchange membrane (PEM) fuel cell. Two types of MEAs, such as the gradient and uniform distributions of Pt catalyst and Nafion, are compared under various operating conditions including cathode flow rate, MEA preparation method, Pt loading and relative humidity (RH). The catalyst ink is sprayed onto Nafion membrane or gas diffusion layer (GDL) through a pneumatic automatic spraying device manufactured by ourselves. MEA is prepared by hot pressing. The results show that as flow rate decreases, the MEA with gradient distribution will show a higher voltage at a high current density for catalyst coated membrane (CCM) method. For CCM method, gradient distribution can optimize cell performance under low cathode flow rate, but the optimization effect is weakened when flow rate is too low. Compared with CCM method, the gas diffusion electrode (GDE) method makes the difference value of Ohmic resistance between gradient and uniform distribution very larger, resulting in poor performance improvement. For GDE method, gradient distribution shows no optimization for cell performance under different Pt loadings and RH, but a smaller average Pt loading and fully-humidified reactants can reduce the performance distinction between uniform and gradient distribution. The gradient design of Pt and Nafion along the in-plane direction is a promising strategy to improve the performance of PEM fuel cell. Reasonably controlling the gradient distribution of Pt in the plane direction of cathode can reduce the amount of Pt catalysts and improve efficiency.


Sign in / Sign up

Export Citation Format

Share Document