A New Gas Path Fault Diagnostic Method of Gas Turbine Based on Support Vector Machine

Author(s):  
Dengji Zhou ◽  
Huisheng Zhang ◽  
Shilie Weng

As a crucial section of gas turbine maintenance decision-making process, to date, gas path fault diagnostic has gained a lot of attention. However, model-based diagnostic methods, like nonlinear gas path analysis (GPA) and genetic algorithms, need an accurate gas turbine model, and diagnostic methods without gas turbine model, like expert system, need a knowledge database. Both are difficult to gain. Thus, data-driven approach for gas path diagnosis, like artificial neural network, is increasingly attractive. Support vector machine (SVM), a novel computational learning method, seems to be a good choice for data-driven gas path fault diagnosis of gas turbine. In this paper, SVM is employed to diagnose a deteriorated gas turbine. The effect of sample number, kernel function, and monitoring parameters on diagnostic accuracy are studied, respectively. Additionally, the diagnostic result of SVM is compared to the result of artificial neural networks. The comparing result confirms that SVM has an obvious advantage over artificial neural networks method based on a small sample of data and can be employed to gas path fault diagnosis of gas turbine. In addition, SVM with radial basis kernel function is the best choice for gas turbine gas path fault diagnosis based on small sample.

2014 ◽  
Author(s):  
Dengji Zhou ◽  
Jiayun Wang ◽  
Huisheng Zhang ◽  
Shilie Weng

As a crucial section of gas turbine maintenance decision-making process, to date, gas path fault diagnostic has gained a lot of attention. However, model-based diagnostic methods, like non-linear gas path analysis (GPA) and genetic algorithms, need an accurate gas turbine model, and diagnostic methods without gas turbine model, like artificial neural networks, need a large number of experimental data. Both are difficult to gain. Support vector machine (SVM), a novel computational learning method with excellent performance, seems to be a good choice for gas path fault diagnostic of gas turbine without engine model. In this paper, SVM is employed to diagnose a deteriorated gas turbine. And the diagnostic result of SVM is compared to the result of artificial neural networks. The comparing result confirms that SVM has an obvious advantage over artificial neural networks method based on a small sample of data, and can be employed to gas path fault diagnostic of gas turbine. Additionally, SVM with radial basis kernel function is the best choice for gas turbine gas path fault diagnostic based on small sample.


2012 ◽  
Vol 249-250 ◽  
pp. 400-404 ◽  
Author(s):  
Feng Lu ◽  
Tie Bin Zhu ◽  
Yi Qiu Lv

In order to improve diagnostic accuracy and reduce the rate of misdiagnosis to the aircraft engine gas path faulty, the methods based on data-driven and information fusion are developed and analyzed. BP neural network (NN) and RBF neural network based on data-driven single gas path fault diagnosis method is introduced firstly. Design gas path performance estimators and the fault type classification for turbo-shaft engine. Then the gas path fused diagnostic structure based on D-S evidence theory and least squares support vector machine are developed. Comparisons of the turbo-shaft engine gas path fault diagnosis verify the feasibility and effectiveness of the gas path fault diagnosis based on information fusion.


2021 ◽  
Author(s):  
Chen Yao ◽  
Xi Yueyun ◽  
Chen Jinwei ◽  
Zhang Huisheng

Abstract Gas turbine is widely used in aviation and energy industries. Gas path fault diagnosis is an important task for gas turbine operation and maintenance. With the development of information technology, especially deep learning methods, data-driven approaches for gas path diagnosis are developing rapidly in recent years. However, the mechanism of most data-driven models are difficult to explain, resulting in lacking of the credibility of the data-driven methods. In this paper, a novel explainable data-driven model for gas path fault diagnosis based on Convolutional Neural Network (CNN) using Local Interpretable Model-agnostic Explanations (LIME) method is proposed. The input matrix of CNN model is established by considering the mechanism information of gas turbine fault modes and their effects. The relationship between the measurement parameters and fault modes are considered to arrange the relative position in the input matrix. The key parameters which contributes to fault recognition can be achieved by LIME method, and the mechanism information is used to verify the fault diagnostic proceeding and improve the measurement sensor matrix arrangement. A double shaft gas turbine model is used to generate healthy and fault data including 12 typical faults to test the model. The accuracy and interpretability between the CNN diagnosis model built with prior mechanism knowledge and built by parameter correlation matrix are compared, whose accuracy are 96.34% and 89.46% respectively. The result indicates that CNN diagnosis model built with prior mechanism knowledge shows better accuracy and interpretability. This method can express the relevance of the failure mode and its high-correlation measurement parameters in the model, which can greatly improve the interpretability and application value.


Author(s):  
Bhargavi Munnaluri ◽  
K. Ganesh Reddy

Wind forecasting is one of the best efficient ways to deal with the challenges of wind power generation. Due to the depletion of fossil fuels renewable energy sources plays a major role for the generation of power. For future management and for future utilization of power, we need to predict the wind speed.  In this paper, an efficient hybrid forecasting approach with the combination of Support Vector Machine (SVM) and Artificial Neural Networks(ANN) are proposed to improve the quality of prediction of wind speed. Due to the different parameters of wind, it is difficult to find the accurate prediction value of the wind speed. The proposed hybrid model of forecasting is examined by taking the hourly wind speed of past years data by reducing the prediction error with the help of Mean Square Error by 0.019. The result obtained from the Artificial Neural Networks improves the forecasting quality.


Biomolecules ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 500
Author(s):  
László Keresztes ◽  
Evelin Szögi ◽  
Bálint Varga ◽  
Viktor Farkas ◽  
András Perczel ◽  
...  

The amyloid state of proteins is widely studied with relevance to neurology, biochemistry, and biotechnology. In contrast with nearly amorphous aggregation, the amyloid state has a well-defined structure, consisting of parallel and antiparallel β-sheets in a periodically repeated formation. The understanding of the amyloid state is growing with the development of novel molecular imaging tools, like cryogenic electron microscopy. Sequence-based amyloid predictors were developed, mainly using artificial neural networks (ANNs) as the underlying computational technique. From a good neural-network-based predictor, it is a very difficult task to identify the attributes of the input amino acid sequence, which imply the decision of the network. Here, we present a linear Support Vector Machine (SVM)-based predictor for hexapeptides with correctness higher than 84%, i.e., it is at least as good as the best published ANN-based tools. Unlike artificial neural networks, the decisions of the linear SVMs are much easier to analyze and, from a good predictor, we can infer rich biochemical knowledge. In the Budapest Amyloid Predictor webserver the user needs to input a hexapeptide, and the server outputs a prediction for the input plus the 6 × 19 = 114 distance-1 neighbors of the input hexapeptide.


Sign in / Sign up

Export Citation Format

Share Document