Data-Driven Based Gas Path Fault Diagnosis for Turbo-Shaft Engine

2012 ◽  
Vol 249-250 ◽  
pp. 400-404 ◽  
Author(s):  
Feng Lu ◽  
Tie Bin Zhu ◽  
Yi Qiu Lv

In order to improve diagnostic accuracy and reduce the rate of misdiagnosis to the aircraft engine gas path faulty, the methods based on data-driven and information fusion are developed and analyzed. BP neural network (NN) and RBF neural network based on data-driven single gas path fault diagnosis method is introduced firstly. Design gas path performance estimators and the fault type classification for turbo-shaft engine. Then the gas path fused diagnostic structure based on D-S evidence theory and least squares support vector machine are developed. Comparisons of the turbo-shaft engine gas path fault diagnosis verify the feasibility and effectiveness of the gas path fault diagnosis based on information fusion.

Energies ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 4017 ◽  
Author(s):  
Haikun Shang ◽  
Junyan Xu ◽  
Zitao Zheng ◽  
Bing Qi ◽  
Liwei Zhang

Power transformers are important equipment in power systems and their reliability directly concerns the safety of power networks. Dissolved gas analysis (DGA) has shown great potential for detecting the incipient fault of oil-filled power transformers. In order to solve the misdiagnosis problems of traditional fault diagnosis approaches, a novel fault diagnosis method based on hypersphere multiclass support vector machine (HMSVM) and Dempster–Shafer (D–S) Evidence Theory (DET) is proposed. Firstly, proper gas dissolved in oil is selected as the fault characteristic of power transformers. Secondly, HMSVM is employed to diagnose transformer fault with selected characteristics. Then, particle swarm optimization (PSO) is utilized for parameter optimization. Finally, DET is introduced to fuse three different fault diagnosis methods together, including HMSVM, hybrid immune algorithm (HIA), and kernel extreme learning machine (KELM). To avoid the high conflict between different evidences, in this paper, a weight coefficient is introduced for the correction of fusion results. Results indicate that the fault diagnosis based on HMSVM has the highest probability to identify transformer faults among three artificial intelligent approaches. In addition, the improved D–S evidence theory (IDET) combines the advantages of each diagnosis method and promotes fault diagnosis accuracy.


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Xiaoxun Zhu ◽  
Jianhong Zhao ◽  
Dongnan Hou ◽  
Zhonghe Han

This study proposes a symmetrized dot pattern (SDP) characteristic information fusion-based convolutional neural network (CNN) fault diagnosis method to resolve issues of high complexity, nonlinearity, and instability in original rotor vibration signals. The method was used to conduct information fusion of real modal components of vibration signals and SDP image identification using CNN in order to achieve vibration fault diagnosis. Compared with other graphic processing methods, the proposed method more fully expressed the characteristics of different vibration signals and thus presented variations between different vibration states in a simpler and more intuitive way. The proposed method was experimentally investigated using simulation signals and rotor test-rig signals, and its validity and advancements were demonstrated using experimental analysis. By using CNN through deep learning to adaptively extract SDP characteristic information, vibration fault identification was ultimately realized.


2014 ◽  
Vol 666 ◽  
pp. 203-207
Author(s):  
Jian Hua Cao

This paper is to present a fault diagnosis method for electrical control system of automobile based on support vector machine. We collect the common fault states of electrical control system of automobile to analyze the fault diagnosis ability of electrical control system of automobile based on support vector machine. It can be seen that the accuracy of fault diagnosis for electrical control system of automobile by support vector machine is 92.31%; and the accuracy of fault diagnosis for electrical control system of automobile by BP neural network is 80.77%. The experimental results show that the accuracy of fault diagnosis for electrical control system of automobile of support vector machine is higher than that of BP neural network.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Weixiao Xu ◽  
Luyang Jing ◽  
Jiwen Tan ◽  
Lianchen Dou

Each pattern recognition method has its advantages and disadvantages to diagnose the state of rotating machinery. There are many fault types of rolling bearings with apparent uncertainty. The optimal fusion level is usually challenging to be selected for a specific fault diagnosis task, and extensive human labour and prior knowledge are also highly required during these selections. To solve the above problems, a multimodel decision fusion method based on Deep Convolutional Neural Network and Improved Dempster-Shafer Evidence Theory (DCNN-IDST) is proposed for the inspection of rolling bearing. To solve the defect of the original evidence theory method in the fusion of high-conflict evidence, the fuzzy consistency matrix is introduced. By calculating the factor weight, the reliability and rationality of D-S evidence theory are improved. The DCNN model can learn features from the original data and carry out adaptive feature extraction for multiple sensor information. The features extracted by DCNN adaptively are input into multiple network models for decision fusion. The new method of DCNN-IDST multimodel decision fusion is applied to detect the damage of rolling bearings. To evaluate the effectiveness of the proposed method, both the BP neural network and RBF neural network are used to set up a multigroup comparison test. The result demonstrates that the proposed method can detect the fault of the rolling bearing effectively and achieve the highest diagnosis accuracy among all the tested methods in the experiment.


2019 ◽  
Vol 9 (19) ◽  
pp. 4122 ◽  
Author(s):  
Bo Wang ◽  
Hongwei Ke ◽  
Xiaodong Ma ◽  
Bing Yu

Due to the poor working conditions of an engine, its control system is prone to failure. If these faults cannot be treated in time, it will cause great loss of life and property. In order to improve the safety and reliability of an aero-engine, fault diagnosis, and optimization method of engine control system based on probabilistic neural network (PNN) and support vector machine (SVM) is proposed. Firstly, using the German 3 W piston engine as a control object, the fault diagnosis scheme is designed and introduced briefly. Then, the fault injection is performed to produce faults, and the data sample for engine fault diagnosis is established. Finally, the important parameters of PNN and SVM are optimized by particle swarm optimization (PSO), and the results are analyzed and compared. It shows that the engine fault diagnosis method based on PNN and SVM can effectively diagnose the common faults. Under the optimization of PSO, the accuracy of PNN and SVM results are significantly improved, the classification accuracy of PNN is up to 96.4%, and the accuracy of SVM is up to 98.8%, which improves the application of them in fault diagnosis technology of aero-piston engine control system.


2015 ◽  
Vol 727-728 ◽  
pp. 872-875
Author(s):  
Wen Bo Na ◽  
Qing Feng Jiang ◽  
Zhi Wei Su

In order to improve the accuracy of diagnosis pumping, and accelerate the speed of diagnosis, a fault diagnosis model based on improved extreme learning machine (RWELM) was proposed. Firstly, it extracted the energy characteristic eigenvector of dynamometer cards of an oilfield in northern Shanxi by using wavelet packet decomposition method. Then through simulation of fault diagnosis, and compare with the extreme learning machine (ELM), RBF neural networks and support vector machine (SVM). The experimental results show that the accuracy and the speed of fault diagnosis based on the RWELM are better than the ELM, RBF neural network and SVM.


2017 ◽  
Vol 2017 ◽  
pp. 1-5
Author(s):  
Yu Ding ◽  
Qiang Liu

A data-driven fault diagnosis method that combines Kriging model and neural network is presented and is further used for power transformers based on analysis of dissolved gases in oil. In order to improve modeling accuracy of Kriging model, a modified model that replaces the global model of Kriging model with BP neural network is presented and is further extended using linearity weighted aggregation method. The presented method integrates characteristics of the global approximation of the neural network technology and the localized departure of the Kriging model, which improves modeling accuracy. Finally, the validity of this method is demonstrated by several numerical computations of transformer fault diagnosis problems.


Sign in / Sign up

Export Citation Format

Share Document