Experimental Investigation of the Full Flow Field in a Molten Salt Pump by Particle Image Velocimetry

2015 ◽  
Vol 137 (10) ◽  
Author(s):  
Chunlei Shao ◽  
Jianfeng Zhou ◽  
Boqin Gu ◽  
Wenjie Cheng

Particle image velocimetry (PIV) technology was used to study steady and unsteady internal flow fields in a molten salt pump under both internal and external synchronization modes. The velocity fields in the suction chamber, impeller passage and volute were analyzed at different flow rates. The velocity distribution uniformity, velocity weighted average divergent flow angle, and circumferential component of absolute velocity were calculated on the basis of the obtained flow fields. The research is meaningful to the development of molten salt pumps, and the experimental method serves as a reference to similar rotating fluid machinery.

2004 ◽  
Vol 126 (5) ◽  
pp. 585-593 ◽  
Author(s):  
Pramote Hochareon ◽  
Keefe B. Manning ◽  
Arnold A. Fontaine ◽  
John M. Tarbell ◽  
Steven Deutsch

In order to bridge the gap of existing artificial heart technology to the diverse needs of the patient population, we have been investigating the viability of a scaled-down design of the current 70 cc Penn State artificial heart. The issues of clot formation and hemolysis may become magnified within a 50 cc chamber compared to the existing 70 cc one. Particle image velocimetry (PIV) was employed to map the entire 50 cc Penn State artificial heart chamber. Flow fields constructed from PIV data indicate a rotational flow pattern that provides washout during diastole. In addition, shear rate maps were constructed for the inner walls of the heart chamber. The lateral walls of the mitral and aortic ports experience high shear rates while the upper and bottom walls undergo low shear rates, with sufficiently long exposure times to potentially induce platelet activation or thrombus formation. In this study, we have demonstrated that PIV may adequately map the flow fields accurately in a reasonable amount of time. Therefore, the potential exists of employing PIV as a design tool.


2012 ◽  
Vol 9 (77) ◽  
pp. 3378-3386 ◽  
Author(s):  
Richard J. Bomphrey ◽  
Per Henningsson ◽  
Dirk Michaelis ◽  
David Hollis

Aerodynamic structures generated by animals in flight are unstable and complex. Recent progress in quantitative flow visualization has advanced our understanding of animal aerodynamics, but measurements have hitherto been limited to flow velocities at a plane through the wake. We applied an emergent, high-speed, volumetric fluid imaging technique (tomographic particle image velocimetry) to examine segments of the wake of desert locusts, capturing fully three-dimensional instantaneous flow fields. We used those flow fields to characterize the aerodynamic footprint in unprecedented detail and revealed previously unseen wake elements that would have gone undetected by two-dimensional or stereo-imaging technology. Vortex iso-surface topographies show the spatio-temporal signature of aerodynamic force generation manifest in the wake of locusts, and expose the extent to which animal wakes can deform, potentially leading to unreliable calculations of lift and thrust when using conventional diagnostic methods. We discuss implications for experimental design and analysis as volumetric flow imaging becomes more widespread.


2011 ◽  
Vol 133 (6) ◽  
Author(s):  
Emily J. Berg ◽  
Risa J. Robinson

Emphysema is a progressive lung disease that involves permanent destruction of the alveolar walls. Fluid mechanics in the pulmonary region and how they are altered with the presence of emphysema are not well understood. Much of our understanding of the flow fields occurring in the healthy pulmonary region is based on idealized geometries, and little attention has been paid to emphysemic geometries. The goal of this research was to utilize actual replica lung geometries to gain a better understanding of the mechanisms that govern fluid motion and particle transport in the most distal regions of the lung and to compare the differences that exist between healthy and emphysematous lungs. Excised human healthy and emphysemic lungs were cast, scanned, graphically reconstructed, and used to fabricate clear, hollow, compliant models. Three dimensional flow fields were obtained experimentally using stereoscopic particle image velocimetry techniques for healthy and emphysematic breathing conditions. Measured alveolar velocities ranged over two orders of magnitude from the duct entrance to the wall in both models. Recirculating flow was not found in either the healthy or the emphysematic model, while the average flow rate was three times larger in emphysema as compared to healthy. Diffusion dominated particle flow, which is characteristic in the pulmonary region of the healthy lung, was not seen for emphysema, except for very small particle sizes. Flow speeds dissipated quickly in the healthy lung (60% reduction in 0.25 mm) but not in the emphysematic lung (only 8% reduction 0.25 mm). Alveolar ventilation per unit volume was 30% smaller in emphysema compared to healthy. Destruction of the alveolar walls in emphysema leads to significant differences in flow fields between the healthy and emphysemic lung. Models based on replica geometry provide a useful means to quantify these differences and could ultimately improve our understanding of disease progression.


2000 ◽  
Vol 203 (24) ◽  
pp. 3795-3808 ◽  
Author(s):  
K.S. Mead ◽  
M.A. Koehl

Many crustaceans detect odors from distant sources using chemosensory sensilla (aesthetascs) on their antennules. The greater the flow of water through arrays of aesthetascs, the faster the access of odorant to receptors inside the aesthetascs. Stomatopods facilitate odorant access by flicking their antennules, thus increasing the relative velocity of the water reaching their aesthetascs. We used dynamically scaled physical models to investigate how aesthetasc size and spacing and antennule flicking velocity affect flow penetration into the simple aesthetasc arrays of the stomatopod Gonodactylaceus mutatus. Particle image velocimetry of flow fields near models of juvenile and adult antennules revealed that velocity gradients around the aesthetascs are steeper during the outward part of the flick than during the return stroke and that the velocity gradients are steeper at the aesthetasc tips than at their bases. More fluid per unit time flows between aesthetasc rows during the outward stroke than during the return stroke, ensuring that odor sampling is pulsatile. During flicking, velocity gradients are steeper near adult aesthetascs than near juvenile aesthetascs, and adults process more fluid per unit time than juveniles. The resulting differences in odorant access can be related to size- and age-dependent changes in stomatopod ecology.


2006 ◽  
Vol 4 (3) ◽  
pp. 328-335 ◽  
Author(s):  
J. P. Feser ◽  
A. K. Prasad ◽  
S. G. Advani

Particle image velocimetry was used to measure 2D velocity fields in representative regions of interest within flow channels of interdigitated and single-serpentine proton exchange membrane (PEM) fuel cell models. The model dimensions, gas diffusion layer (GDL) permeability, working fluid, and flow rates were selected to be geometrically and dynamically similar to the cathode-side airflow in a typical PEM fuel cell. The model was easily reconfigurable between parallel, single-serpentine, and interdigitated flow fields, and was constructed from transparent materials to enable optical imaging. Velocity maps were obtained of both the primary and secondary flow within the channels. Measurements of the secondary flows in interdigitated and single-serpentine flow fields indicate that significant portions of the flow travel between adjacent channels through the porous medium. Such convective bypass can enhance fuel cell performance by supplying fresh reactant to the lands regions and also by driving out product water from under the lands to the flow channels.


Sign in / Sign up

Export Citation Format

Share Document