reachable workspace
Recently Published Documents


TOTAL DOCUMENTS

133
(FIVE YEARS 32)

H-INDEX

18
(FIVE YEARS 2)

Author(s):  
Sinh Nguyen Phu ◽  
Terence Essomba

Robotic-assisted bone reduction surgery consists in using robots to reconnect patients’ bone fragments prior to fracture healing. The goal of this study is to propose a novel augmented 3-RPSP tripod mechanism with six degree of freedom for longitudinal bone reduction surgery. Its inverse kinematic model is studied and its forward kinematic model is solved by establishing the constraint equations, applying Sylvester’s dialytic method and finding the solutions of the resulting polynomial equation. The velocity model is calculated and its Jacobian matrix is used to identify its singular configurations. In comparison to the Stewart–Gough platform that is a typical mechanism used in this application, the proposed mechanism offers larger reachable workspace which is an important aspect in the femoral shaft bone reduction. A Physiguide and Msc Adams software are used to carry out a simulation of a real femur fracture reduction using the proposed mechanism to validate its suitability. A robotic prototype has been designed and manufactured in order to test its capability of performing diaphyseal femur reduction surgery.


2021 ◽  
Vol 2115 (1) ◽  
pp. 012002
Author(s):  
Mahesh A Makwana ◽  
Haresh P Patolia

Abstract For a parallel configuration of a robot manipulator, the solution of Forward Kinematics (FK) is tough compared to Inverse Kinematics (IK). This paper presents the model-based motion planning of a delta parallel robot in Simulink’s SimScape environment. A model was developed and simulated for motion study. The developed model has been simulated to solve the FK of the parallel manipulator and to check its efficacy. First, a helix curve has been planned within the reachable workspace. Then IK was solved to extract angular positions of the biceps. Obtained angular positions then fed to SimScape model to run a simulation. The path taken by the end effector of the system calculated by simulation is in good approximation to the planned helix path. Further, visual simulation and motion analysis of delta parallel robot can be performed by Model-based simulation and solves mechanical design as well control system design problems. Experimental study also shows that the circular path designed for experiment is well followed in real time simulation.


2021 ◽  
Vol 8 ◽  
Author(s):  
Qiwei Zhang ◽  
Hongbin Fang ◽  
Jian Xu

Earthworm-like robots have received great attention due to their prominent locomotion abilities in various environments. In this research, by exploiting the extraordinary three-dimensional (3D) deformability of the Yoshimura-origami structure, the state of the art of earthworm-like robots is significantly advanced by enhancing the locomotion capability from 2D to 3D. Specifically, by introducing into the virtual creases, kinematics of the non-rigid-foldable Yoshimura-ori structure is systematically analyzed. In addition to exhibiting large axial deformation, the Yoshimura-ori structure could also bend toward different directions, which, therefore, significantly expands the reachable workspace and makes it possible for the robot to perform turning and rising motions. Based on prototypes made of PETE film, mechanical properties of the Yoshimura-ori structure are also evaluated experimentally, which provides useful guidelines for robot design. With the Yoshimura-ori structure as the skeleton of the robot, a hybrid actuation mechanism consisting of SMA springs, pneumatic balloons, and electromagnets is then proposed and embedded into the robot: the SMA springs are used to bend the origami segments for turning and rising motion, the pneumatic balloons are employed for extending and contracting the origami segments, and the electromagnets serve as anchoring devices. Learning from the earthworm’s locomotion mechanism--retrograde peristalsis wave, locomotion gaits are designed for controlling the robot. Experimental tests indicate that the robot could achieve effective rectilinear, turning, and rising locomotion, thus demonstrating the unique 3D locomotion capability.


Robotics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 91
Author(s):  
Vighnesh Vatsal ◽  
Guy Hoffman

This article presents the design process of a supernumerary wearable robotic forearm (WRF), along with methods for stabilizing the robot’s end-effector using human motion prediction. The device acts as a lightweight “third arm” for the user, extending their reach during handovers and manipulation in close-range collaborative activities. It was developed iteratively, following a user-centered design process that included an online survey, contextual inquiry, and an in-person usability study. Simulations show that the WRF significantly enhances a wearer’s reachable workspace volume, while remaining within biomechanical ergonomic load limits during typical usage scenarios. While operating the device in such scenarios, the user introduces disturbances in its pose due to their body movements. We present two methods to overcome these disturbances: autoregressive (AR) time series and a recurrent neural network (RNN). These models were used for forecasting the wearer’s body movements to compensate for disturbances, with prediction horizons determined through linear system identification. The models were trained offline on a subset of the KIT Human Motion Database, and tested in five usage scenarios to keep the 3D pose of the WRF’s end-effector static. The addition of the predictive models reduced the end-effector position errors by up to 26% compared to direct feedback control.


2021 ◽  
pp. 1-13
Author(s):  
Jiao Wang ◽  
Henry Y K Lau

Abstract This study presents the performance analysis of multi- segment continuum robots. Since continuum robots are designed to provide excellent dexterity, two local indices, axiality and angularity dexterity, are introduced to study the dexterity that is inspired by separating Jacobian matrix. A Monte Carlo Method is adopted to simulate the distribution of local dexterity over the workspace. On this basis, the corresponding global indices in axiality and angularity are defined to compare global dexterity performance. To investigate the optimal kinematic performance, an objective function related to the segment lengths is designed under the consideration of reachable workspace as well as dexterity performance. Particle Swarm Optimization (PSO) algorithm is adopted to solve the optimization problem successfully. The optimal length distributions for two-segment and three-segment continuum robots are discovered. It is found that this method can also apply to general multi-segment continuum robots.


Author(s):  
Mohsen Asgari ◽  
Amin Nikoobin

This study is aimed at finding the entire points that a manipulator can launch an object onto by an optimal motion. These points are called throw-able workspace, which are located outside the reachable workspace of the robot. From an optimization point of view, some throwing parameters can be found to decrease motion cost. In this paper, by using this concept, the best combination of throwing and trajectory planning is attempted. The proposed method consists of two basic ideas: first, defining the optimal throwing problem as the optimal control problem (OCP) and solving it using the indirect solution approach based on the fundamental lemma of calculus of variations. To achieve the best release angle and speed, the throwing equation of motion is applied as a moving-end boundary condition (BC). Second, based on the obtained optimal throwing, an algorithm is presented to calculate the maximum throw-able workspace. The simulation results demonstrate the effectiveness of the proposed framework for both single link and spatial two-degree-of-freedom throwing robots.


2021 ◽  
Vol 11 (6) ◽  
pp. 2607
Author(s):  
Matteo Russo ◽  
Marco Ceccarelli ◽  
Daniele Cafolla

This paper introduces a novel kinematic model for a tendon-driven compliant torso mechanism for humanoid robots, which describes the complex behaviour of a system characterised by the interaction of a complex compliant element with rigid bodies and actuation tendons. Inspired by a human spine, the proposed mechanism is based on a flexible backbone whose shape is controlled by two pairs of antagonistic tendons. First, the structure is analysed to identify the main modes of motion. Then, a constant curvature kinematic model is extended to describe the behaviour of the torso mechanism under examination, which includes axial elongation/compression and torsion in addition to the main bending motion. A linearised stiffness model is also formulated to estimate the static response of the backbone. The novel model is used to evaluate the workspace of an example mechanical design, and then it is mapped onto a controller to validate the results with an experimental test on a prototype. By replacing a previous approximated model calibrated on experimental data, this kinematic model improves the accuracy and efficiency of the torso mechanism and enables the performance evaluation of the robot over the reachable workspace, to ensure that the tendon-driven architecture operates within its wrench-closure workspace.


2021 ◽  
pp. 1-42
Author(s):  
Yijia Peng ◽  
Wanghui Bu

Abstract Workspace is an important reference for design of cable-driven parallel robots (CDPRs). Most current researches focus on calculating the workspace of redundant CDPRs. However, few literatures study the workspace of under-constrained CDPRs. In this paper, the static equilibrium reachable workspace (SERW) of spatial 3-cable under-constrained CDPRs is solved numerically since expressions describing workspace boundaries cannot be obtained in closed form. The analysis steps to solve the SERW are as follows. First, expressions which describe the SERW and its boundaries are proposed. Next, these expressions are instantiated through the novel anchor points model composed of linear equations, quadratic equations and limits of tension in cables. Then, based on the reformulated linearization technique (RLT), the constraint system is transformed into a system containing only linear equality constraints and linear inequality constraints. Finally, the framework of branch-and-prune (BP) algorithm is adopted to solve this system. The effect of the algorithm is verified by 2 examples. One is a special 3-cable CDPR in which the anchor points layouts both on the moving platform (MP) and on the base are equilateral triangles, followed by the method to extract the SERW boundary where cables do not interfere with each other. The other is a general case with randomly selected geometry arrangement. The presented method in this paper is universal for spatial 3-cable CDPRs with arbitrary geometry parameters.


2021 ◽  
Vol 18 (2) ◽  
pp. 172988142199296
Author(s):  
Anton Antonov ◽  
Alexey Fomin ◽  
Victor Glazunov ◽  
Sergey Kiselev ◽  
Giuseppe Carbone

The proposed study provides a solution of the inverse and forward kinematic problems and workspace analysis for a five-degree-of-freedom parallel–serial manipulator, in which the parallel kinematic chain is made in the form of a tripod and the serial kinematic chain is made in the form of two carriages displaced in perpendicular directions. The proposed manipulator allows to realize five independent movements—three translations and two rotations motion pattern (3T2R). Analytical relationships between the coordinates of the end-effector and five controlled movements provided by manipulator’s drives (generalized coordinates) were determined. The approach of reachable workspace calculation was defined with respect to available design constraints of the manipulator based on the obtained algorithms of the inverse and forward kinematics. Case studies are considered based on the obtained algorithms of inverse and forward kinematics. For the inverse kinematic problem, the solution is obtained in accordance with the given laws of position and orientation change of the end-effector, corresponding to the motion along a spiral-helical trajectory. For the forward kinematic problem, various assemblies of the manipulator are obtained at the same given values of the generalized coordinates. An example of reachable workspace designing finalizes the proposed study. Dimensions and extreme values of the end-effector orientation angles are calculated.


Sign in / Sign up

Export Citation Format

Share Document