Thermal Performance Analysis of a Rectangular Longitudinal Finned Solar Air Heater With Semicircular Absorber Plate

2015 ◽  
Vol 138 (1) ◽  
Author(s):  
Satyender Singh ◽  
Prashant Dhiman

Thermal performance of a single-pass single-glass cover solar air heater consisting of semicircular absorber plate finned with rectangular longitudinal fins is investigated. The analysis is carried out for different hydraulic diameters, which were obtained by varying the diameter of the duct from 0.3–0.5 m. One to five numbers of fins are considered. Reynolds number ranges from 1600–4300. Analytical solutions for energy balance equations of different elements and duct flow of the solar air heater are presented; results are compared with finite-volume methodology based numerical solutions obtained from ansys fluent commercial software, and a fairly good agreement is achieved. Moreover, analysis is extended to check the effect of double-glass cover and the recycle of the exiting air. Results revealed that the use of double-glass cover and recycle operation improves the thermal performance of solar air heater.

2018 ◽  
Vol 7 (1) ◽  
pp. 5-15
Author(s):  
Chander Kant ◽  
Prashant Kumar ◽  
Ankur Gill ◽  
Dhiraj Parkash Dhiman

A solar air heater is basically a heat exchanger, which intercepts the incident solar radiation, converts it into heat and finally transfers this heat to a working fluid for an end use system. The mode of air flowing in the ducts of a solar air heater is one of the most significant aspects concerned with solar air heater which dominantly affect. A double duct parallel flow artificially roughened solar air heater with three sides of the absorber plate is investigated in the current study. Unlike the conventional model of solar air heater with only one sided roughened absorber plate, a novel solar air heater with three artificially roughened absorber plate is used so that the surface area of the absorber plate is increased which ultimately increases the rate of heat transfer. Additionally, a double duct parallel flow arrangement through inner and outer duct of solar air heater is considered order to enhance the heat transfer rate. A numerical investigation of the heat transfer and friction factor characteristics of a double duct parallel flow three sided artificially roughened solar air heater has been carried out. A commercial finite volume CFD code ANSYS FLUENT is used to simulate turbulent air flow through artificial roughened solar air heater. Governing equations of the fluid flow and heat transfer i.e. Navier-Stokes equation and energy equation are solved with RNG k-ε turbulence model. Nine different configuration of square rib are studied with relative roughness pitch (P/e = 5-10) and relative roughness height (e/D = 0.03-0.06). The Reynold number of the flow is varied from 2500 to 16000.


2020 ◽  
Vol 142 (5) ◽  
Author(s):  
Dhananjay Kumar ◽  
Laljee Prasad

Abstract The use of artificial roughness is an efficient and commercial way to appreciate the thermal performance from the collector to the air in solar air heater ducts, for numerous applications such as space-heating, crop-drying, and seasoning of timber industrial purpose. In this paper, the tentative inquiry on thermal enactment using new-fangled of three-sided roughened quadrilateral duct solar air heater having an alignment of multiple-v and transverse wire is performed and compared the outcomes with smooth duct air heater under similar operational circumstances. The modification of an arrangement and operational constraints is inspected within the restrictions, the moral of four-sided duct aspect ratio (W/H) = 8, the Reynolds number occupied from 3000 to 12,000, fraction of pitch to roughness height, P/e in the range of 10–25; ratio of roughness height to hydraulic diameter, e/D in the range of 0.018–0.042; at flow attack angle, α = 60 deg for constant moral of relative roughness width, (W/w) = 6. The augmentation on thermal efficiency in three-sided rugged duct is found to be 23–86% when compared to smooth duct, and the maximum thermal efficiency can occur at P/e = 10 and e/D = 0.042. The enhancement in air temperature flowing under three-sided roughened duct is found to be 49.27% more than that of a smooth duct. The instant innovative form of three-sided roughened solar air warmer would be preferable to those of a smooth solar air heater with respect to heat assignment.


Solar Energy ◽  
2020 ◽  
Vol 197 ◽  
pp. 254-265 ◽  
Author(s):  
Shreyas P. Shetty ◽  
Akhil Paineni ◽  
Madhav Kande ◽  
N. Madhwesh ◽  
N. Yagnesh Sharma ◽  
...  

1983 ◽  
Vol 105 (3) ◽  
pp. 254-258 ◽  
Author(s):  
P. Persad ◽  
S. Satcunanathan

Analytic models are developed for the performance prediction of a two-glass-cover solar air heater operated in both the single-pass and two-pass modes. It is shown that the two-pass mode of operation is superior to the single-pass mode of operation over the range of collector inlet temperatures considered. This is seen to be mainly due to the fact that, in the two-pass mode of operation, the outer glass cover is cooled by the working fluid, thereby reducing the top losses. It is also shown that the performance in the two-pass mode of operation is independent of length, over the range of collector lengths considered, and that a critical plate spacing, dependent on the temperature level of operation of the collector, is indicated. Predicted values of performance are in good agreement with experimental results.


Solar Energy ◽  
2021 ◽  
Vol 214 ◽  
pp. 355-366
Author(s):  
Refat Moshery ◽  
Tan Yong Chai ◽  
Kamaruzzaman Sopian ◽  
Ahmad Fudholi ◽  
Ali H.A. Al-Waeli

2018 ◽  
Vol 8 (01) ◽  
Author(s):  
Rakesh Kushwaha ◽  
Ambreesh Prasad Shukla ◽  
Bhupendra Gupta ◽  
Anand Bisen

Everyday sun delivers enormous amount of energy towards earth. Solar energy received by earth in a day is equal to total energy consumed by us in whole year. Plenty of research has been done in utilizing solar energy efficiently. Solar air heater is always a hot topic between the researchers. Different configurations of absorber plate with roughness has been prepared and tested to increase efficiency. In this article, a Computational Fluid Dynamic analysis of solar air heater having triangular shaped bodies place over the absorber plate had been performed. Enhancement in the performance of solar air heater is resulted.


Sign in / Sign up

Export Citation Format

Share Document