scholarly journals Flow and Heat Transfer in Micro Pin Fin Heat Sinks With Nano-Encapsulated Phase Change Materials

2016 ◽  
Vol 138 (6) ◽  
Author(s):  
Bahram Rajabifar ◽  
Hamid Reza Seyf ◽  
Yuwen Zhang ◽  
Sanjeev K. Khanna

In this paper, a 3D-conjugated heat transfer model for nano-encapsulated phase change materials (NEPCMs) cooled micro pin fin heat sink (MPFHS) is presented. The governing equations of flow and heat transfer are solved using a finite volume method based on collocated grid and the results are validated with the available data reported in the literature. The effect of nanoparticles volume fraction (C = 0.1, 0.2, and 0.3), inlet velocity (Vin = 0.015, 0.030, and 0.045 m/s), and bottom wall temperature (Twall = 299.15, 303.15, 315.15, and 350.15 K) is studied on Nusselt and Euler numbers as well as temperature contours in the system. The results indicate that significant heat transfer enhancement is achieved when using the NEPCM slurry as an advanced coolant. The maximum Nusselt number when NEPCM slurry (C = 0.3) with Vin = 0.015, 0.030, and 0.045 (m/s) is employed is 2.27, 1.81, and 1.56 times higher than the ones with base fluid, respectively. However, with increasing bottom wall temperature, the Nusselt number first increases then decreases. The former is due to higher heat transfer capability of coolant at temperatures over the melting range of phase change material (PCM) particles due to partial melting of nanoparticles in this range. However, the latter phenomenon is due to the lower capability of the NEPCM particles and consequently coolant in absorbing heat at coolant temperatures is higher than the temperature correspond to fully melted NEPCM. It was observed that the NEPCM slurry has a drastic effect on the Euler number, and with increasing volume fraction and decreasing inlet velocity, the Euler number increases accordingly.

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
A. Alhashash ◽  
H. Saleh

The present study investigates the natural convection in a wavy enclosure caused by a thermal difference between a cold wall and a hot undulated wall. The enclosure is filled with hybrid nanofluids. The hybrid nanofluids are formed of a phase change material (PCM) suspended in the water. The PCM utilizes polyurethane as the shell and nonadecane as the core. The core absorbs or releases its energy in the shape of latent heat inside the water and contributes to thermal energy storage and heat transfer. The governing equations are expressed in PDEs and solved by the finite element method (FEM). Parametric studies were used to analyze the solid concentration, fusion temperature, amplitude of corrugation, number of corrugations, and Rayleigh number. It is found that the heat transfer rate enhances by the rise of the latent heat of the NEPCM cores. The global heat transfer can be improved by more than 12 % by adding 1 % of NEPCM particles volume fraction. However, the heat transfer tends to decrease by applying the wavy surface.


2010 ◽  
Vol 132 (6) ◽  
Author(s):  
Zhen Yang ◽  
Suresh V. Garimella

Melting of phase change materials (PCMs) embedded in metal foams is investigated. The two-temperature model developed accounts for volume change in the PCM upon melting. Volume-averaged mass and momentum equations are solved, with the Brinkman–Forchheimer extension to Darcy’s law employed to model the porous-medium resistance. Local thermal equilibrium does not hold due to the large difference in thermal diffusivity between the metal foam and the PCM. Therefore, a two-temperature approach is adopted, with the heat transfer between the metal foam and the PCM being coupled by means of an interstitial Nusselt number. The enthalpy method is applied to account for phase change. The governing equations are solved using a finite-volume approach. Effects of volume shrinkage/expansion are considered for different interstitial heat transfer rates between the foam and PCM. The detailed behavior of the melting region as a function of buoyancy-driven convection and interstitial Nusselt number is analyzed. For strong interstitial heat transfer, the melting region is significantly reduced in extent and the melting process is greatly enhanced as is heat transfer from the wall; the converse applies for weak interstitial heat transfer. The melting process at a low interstitial Nusselt number is significantly influenced by melt convection, while the behavior is dominated by conduction at high interstitial Nusselt numbers. Volume shrinkage/expansion due to phase change induces an added flow, which affects the PCM melting rate.


2018 ◽  
Vol 387 ◽  
pp. 37-50 ◽  
Author(s):  
A.S. Dogonchi ◽  
D.D. Ganji ◽  
Oluwole Daniel Makinde

Nanofluid flow and heat transfer in a rotating system between two parallel plates in the presence of thermal radiation and heat source impacts are examined. One of the plates of the considered system is penetrable and the other one is stretchable or shrinkable. A similarity transformation is used to convert the governing momentum and energy equations into non-linear ordinary differential equations with the relevant boundary conditions. The achieved non-linear ordinary differential equations are solved by Duan-Rach Approach (DRA). This method allows us to realize a solution without applying numerical methods to evaluate the unspecified coefficients. The impacts of diverse active parameters such as the stretching/shrinking parameter, the radiation parameter, the heat source parameter, the suction/blowing parameter, the Reynolds number and the volume fraction of nanofluid on the velocity and temperature profiles are explored. Also, the correlation for the Nusselt number has been developed in terms of active parameters of the present study. The outcomes indicate that the Nusselt number is a raising function of the injection parameter, nanofluid volume fraction and the radiation parameter, while it is a decreasing function of the suction and heat source parameters. Furthermore, for injection case by soaring the shrinking parameter, the probability of occurrence of the backflow phenomenon soars.


Author(s):  
Lin Tian ◽  
Wei Bai ◽  
Shanhu Xue ◽  
Zipeng Huang ◽  
Qiuwang Wang

The unsteady turbulent flow and heat transfer in rectangular channel with periodic longitudinal vortex generators on up and bottom walls are investigated by standardized k-ε two equation turbulent model combined with standardized wall function which has been validated by steady experimental data. Influence of varying frequency and amplitude of inlet velocity varying by sine function on heat transfer and friction factor are discussed. It is found that parameters such as Tout, Tf, Tw, Nusselt number and the friction factor f vary with time periodically, phase difference occurred compared with inlet velocity. Pulsating frequency has little impact on time averaged Nusselt number. However, when amplitude increases from 0.2us to 0.8us, the heat transfer rate is augmented by about 4%. Furthermore, a critical frequency has been captured when amplitude equals to 0.8us for the channel studied. The current study will deepen understanding of unsteady flow in plate fuel assembly, which can be used in small-scale reactors.


Author(s):  
Gaoliang Liao ◽  
Xinjun Wang ◽  
Xiaowei Bai ◽  
Ding Zhu ◽  
Jinling Yao

By using the CFX software, the three-dimensional flow and heat transfer characteristics in the cooling duct with pin-fin in the blade trailing edge were numerically simulated. The effects of pin-fin arrangements, Reynolds number, steam superheat degrees, streamwise pin density and convergence angle of the wedge duct on the flow and heat transfer characteristics were analysed. The results show that the Nusselt number on the endwall and pin-fin surfaces as well as the pin-fin row averaged Nusselt number increase with the increasing of Reynolds number, while it decreased with the with the increasing of X/D. The pressure drop increases with the increasing of Reynolds number while decreases with the increasing of X/D in the wedge duct. The degree of superheat has little effect on the pressure loss in the wedge duct. A comprehensive analysis and comparison show that the highest thermal performance is reached in the wedge duct when the value of X/D is 1.5.


2014 ◽  
Vol 18 (suppl.2) ◽  
pp. 283-300 ◽  
Author(s):  
Mostafa Mahmoodi ◽  
Arani Abbasian ◽  
Sebdani Mazrouei ◽  
Saeed Nazari ◽  
Mohammad Akbari

The problem of free convection fluid flow and heat transfer in a square cavity with a flush mounted heat source on its bottom wall and two heat sinks on its vertical side walls has been investigated numerically. Via changing the location of the heat sinks, six different arrangements have been generated. The cavity was filled with Cu-water nanofluid. The governing equations were discretized using the finite volume method and SIMPLER algorithm. Using the developed code, a parametric study was undertaken, and effects of Rayleigh number, arrangements of the heat sinks and volume fraction of the nanoparticles on fluid flow and heat transfer inside the cavity were investigated. Also for the middle-middle heat sinks arrangement, capability of five different water based nanofluids on enhancement of the rate of heat transfer was examined and compared. From the obtained results it was found that the average Nusselt number, for all six different arrangements of the heat sinks, was an increasing function of the Rayleigh number and the volume fraction of the nanoparticles. Also it was found that at high Rayleigh numbers, maximum and minimum average Nusselt number occurred for middle-middle and top-bottom arrangement, respectively. Moreover it was found that for the middle-middle arrangement, at high Rayleigh numbers, maximum and minimum rate of heat transfer was obtained by Cu-water and TiO2-water nanofluids respectively.


2011 ◽  
Vol 15 (3) ◽  
pp. 889-903 ◽  
Author(s):  
Mostafa Mahmoodi

The mixed convection fluid flow and heat transfer in lid-driven rectangular enclosures filled with the Al2O3-water nanofluid is investigated numerically. The left and the right vertical walls as well as the top horizontal wall of the enclosure are maintained at a constant cold temperature Tc. The bottom horizontal wall of the enclosure, which moves from left to right, is kept at a constant hot temperature Th, with Th>Tc. The governing equations written in terms of the primitive variables are solved using the finite volume method and the SIMPLER algorithm. Using the developed code, a parametric study is performed and the effects of the Richardson number, the aspect ratio of the enclosure and the volume fraction of the nanoparticles on the fluid flow and heat transfer inside the enclosure are investigated. The results show that at low Richardson numbers, a primary counterclockwise vortex is formed inside the enclosure. More over it is found that for the range of the Richardson number considered, 10-1-101, the average Nusselt number of the hot wall, increases with increasing the volume fraction of the nanoparticles. Also it is observed that the average Nusselt number of the hot wall of tall enclosures is more that to that of the shallow enclosures.


2019 ◽  
Vol 30 (6) ◽  
pp. 2913-2934 ◽  
Author(s):  
Farzad Pourfattah ◽  
Saeid Yousefi ◽  
Omid Ali Akbari ◽  
Mahsa Adhampour ◽  
Davood Toghraie ◽  
...  

Purpose The purpose of this paper is to numerically simulate the nanofluid boiling inside a tube in turbulent flow regime and to investigate the effect of adding volume faction of CuO nanoparticles on the boiling process. Design/methodology/approach To make sure the accuracy of the obtained numerical results, the results of this paper have been compared with the experimental results and an acceptable coincidence has been achieved. In the current paper, by Euler–Euler method, the phase change of boiling phenomenon has been modeled. The presented results are the local Nusselt number distribution, temperature distribution of wall, the distribution of volume fraction of vapor phase and fluid temperature at the center of the tube. Findings The obtained results indicate that using nanofluid is very effective in the postponement of the boiling process. Hence, by change the amount of volume fraction of nanoparticles in base fluid, the location of phase change and bubble creation are changed. Also, at the Reynolds numbers of 50,000, 100,000 and 150,000 with the volume fraction of 2 per cent, the beginning locations of phase change process are, respectively, 2D, 10D and 13D, and for the volume fraction of 4 per cent, the beginning locations of phase change are 4D, 18D and 19D, respectively. These results indicate that, as the volume fraction of nanoparticles increases, the location of the start of the phase change process is postponed that this issue causes the increment of heat transfer from wall to fluid and the reduction of wall temperature. In general, it can be stated that, in boiling flows, using nanofluid because of the delay in boiling phenomenon has a good effect on heat transfer enhancement of heated walls. Also, the obtained results show that, by increasing Reynolds number, the created vapor phase reduces that leads to increase of the Nusselt number. Originality/value The paper investigates the effect of using nanofluid in phase change process of cooling fluid.


Sign in / Sign up

Export Citation Format

Share Document