Solution for Equation of Two-Dimensional Transient Heat Conduction in Functionally Graded Material Hollow Sphere With Piezoelectric Internal and External Layers

2016 ◽  
Vol 139 (1) ◽  
Author(s):  
M. Jabbari ◽  
S. M. Mousavi ◽  
M. A. Kiani

In this paper, an exact solution for the equation of two-dimensional transient heat conduction in a hollow sphere made of functionally graded material (FGM) and piezoelectric layers is developed. Transient temperature distribution, as a function of radial and circumferential directions and time with general thermal boundary conditions on the inside and outside surfaces, is analytically obtained for different layers, using the method of separation of variables and Legendre series. The results are the sum of transient and steady-state solutions that depend upon the initial condition for temperature and heat source, respectively. The FGM properties are assumed to depend on the variable r and they are expressed as power functions of r.

2017 ◽  
Vol 139 (5) ◽  
Author(s):  
M. Jabbari ◽  
M. A. Kiani

In this paper, the exact solution of the equation of transient heat conduction in two dimensions for a hollow cylinder made of functionally graded material (FGM) and piezoelectric layers is developed. Temperature distribution, as function of radial and circumferential directions and time, is analytically obtained for different layers, using the method of separation of variables and generalized Bessel function. The FGM properties are assumed to depend on the variable r, and they are expressed as power functions of r.


2017 ◽  
Vol 139 (5) ◽  
Author(s):  
M. Jabbari ◽  
S. M. Mousavi ◽  
M. A. Kiani

In this paper, an analytical method is developed to obtain the solution for the two-dimensional (2D) (r,θ) transient thermal and mechanical stresses in a hollow sphere made of functionally graded (FG) material and piezoelectric layers. The FGM properties vary continuously across the thickness, according to the power functions of radial direction. The temperature distribution as a function of radial and circumferential directions and time is obtained solving the energy equation, using the method of separation of variables and Legendre series. The Navier equations are solved analytically using the Legendre polynomials and the system of Euler differential equations.


2020 ◽  
Vol 865 ◽  
pp. 67-71
Author(s):  
Shi Rong Li ◽  
Peng Xiong ◽  
Da Fu Cao

In this paper, thermoelastic damping (TED) in a simply supported rectangular functionally graded material (FGM) micro plate with continuous variation of the material properties along the thickness direction is performed. The equations of motion and the heat conduction equation coupled with the thermal effects are derived based on the Mindlin plate theory and the one-way coupled heat conduction theory, respectively. The heat conduction equation with variable coefficients is solved by using the layer-wise homogenization approach. Analytical solution of TED is obtained by complex frequency method. Numerical results of TED are presented for the rectangular FGM micro plate made of ceramic-metal constituents with the power-law gradient profile. The effects of the shear deformation, the material gradient index, the plate thickness on the TED of the FGM micro plate are studied.


Sign in / Sign up

Export Citation Format

Share Document