Mixed Convolved Action Variational Methods for Poroelasticity

2016 ◽  
Vol 83 (9) ◽  
Author(s):  
Bradley T. Darrall ◽  
Gary F. Dargush

Although Lagrangian and Hamiltonian analytical mechanics represent perhaps the most remarkable expressions of the dynamics of a mechanical system, these approaches also come with limitations. In particular, there is inherent difficulty to represent dissipative processes, and the restrictions placed on end point variations are not consistent with the definition of initial value problems. The present work on the time-domain response of poroelastic media extends the recent formulations of the mixed convolved action (MCA). The action in this proposed approach is formed by replacing the inner product in Hamilton's principle with a time convolution. As a result, dissipative processes can be represented in a natural way and the required constraints on the variations are consistent with the actual initial and boundary conditions of the problem. The variational formulation developed here employs temporal impulses of velocity, effective stress, pore pressure, and pore fluid mass flux as primary variables in this mixed approach, which also uses convolution operators and fractional calculus to achieve the desired characteristics. The resulting MCA is formulated directly in the time domain to develop a new stationary principle for poroelasticity, which applies to dynamic poroelastic and quasi-static consolidation problems alike. By discretizing the MCA using the finite element method over both space and time, new computational mechanics formulations are developed. Here, this formulation is implemented for the two-dimensional case, and several numerical examples of dynamic poroelasticity are presented to validate the approach.

Author(s):  
Bradley T. Darrall ◽  
Gary F. Dargush

Although Lagrangian and Hamiltonian analytical mechanics represent perhaps the most remarkable expressions of the dynamics of a mechanical system, these approaches also come with limitations. In particular, there is inherent difficulty to represent dissipative processes and the restrictions placed on end point variations are not consistent with the definition of initial value problems. The present work on poroelastic media extends the recent formulation of a mixed convolved action to address a continuum dynamical problem with dissipation through the development of a new variational approach. The action in this proposed approach is formed by replacing the inner product in Hamilton’s principle with a time convolution. As a result, dissipative processes can be represented in a natural way and the required constraints on the variations are consistent with the actual initial and boundary conditions of the problem. The variational formulations developed here employ temporal impulses of velocity, effective stress, pore pressure and pore fluid mass flux as primary variables in this mixed approach, which also uses convolution operators and fractional calculus to achieve the desired characteristics. The resulting mixed convolved action is formulated in both the time and frequency domains to develop two new stationary principles for dynamic poroelasticity. In addition, the first variation of the action provides a temporally well-balanced weak form that leads to a new family of finite element methods in time, as well as space.


2015 ◽  
Vol 107 ◽  
pp. 282-289 ◽  
Author(s):  
Chengyan Peng ◽  
Xiaochuan Ma ◽  
Geping Lin ◽  
Min Wang

1992 ◽  
Vol 59 (3) ◽  
pp. 596-603 ◽  
Author(s):  
S. K. Datta ◽  
T. H. Ju ◽  
A. H. Shah

The surface responses due to impact load on an infinite uniaxial graphite/epoxy plate containing a horizontal crack is investigated both in time and frequency domain by using a hybrid method combining the finite element discretization of the near-field with boundary integral representation of the field outside a contour completely enclosing the crack. This combined method leads to a set of linear unsymmetric complex matrix equations, which are solved to obtain the response in the frequency domain by biconjugate gradient method. The time-domain response is then obtained by using an FFT. In order to capture the time-domain characteristics accurately, high-order finite elements have been used. Also, both the six-node singular elements and eight-node transition elements are used around the crack tips to model the crack-tip singularity. From the numerical results for surface responses it seems possible to clearly identify both the depth and length of this crack.


2000 ◽  
Vol 88 (12) ◽  
pp. 7321-7327 ◽  
Author(s):  
Brian A. Todd ◽  
Steven J. Eppell ◽  
Fredy R. Zypman

2021 ◽  
Vol 2087 (1) ◽  
pp. 012061
Author(s):  
Mingrui Wang ◽  
Mei Xu ◽  
Jiangfeng Wang ◽  
Yingying Guo

Abstract How to use the amplitude-frequency characteristics to reconstruct the signal to obtain the time-domain response has always been a concern in the field of nuclear electromagnetic protection. So far, in practical applications, parametric modeling and non-parametric modeling have been used to solve related problems. This article summarizes the research and development of using amplitude-frequency characteristics to recover time-domain signals in the field of nuclear electromagnetic pulse protection, and briefly introduces the shortcomings of the two methods in combination with specific experiments.


2021 ◽  
pp. 106-155
Author(s):  
Victor Lazzarini

This chapter is dedicated to exploring a form of the Fourier transform that can be applied to digital waveforms, the discrete Fourier transform (DFT). The theory is introduced and discussed as a modification to the continuous-time transform, alongside the concept of windowing in the time domain. The fast Fourier transform is explored as an efficient algorithm for the computation of the DFT. The operation of discrete-time convolution is presented as a straight application of the DFT in musical signal processing. The chapter closes with a detailed look at time-varying convolution, which extends the principles developed earlier. The conclusion expands the definition of spectrum once more.


Sign in / Sign up

Export Citation Format

Share Document