Stability of Two-Immiscible-Fluid Systems: A Review of Canonical Plane Parallel Flows

2016 ◽  
Vol 138 (10) ◽  
Author(s):  
Alireza Mohammadi ◽  
Alexander J. Smits

A brief review is given on the stability of two-fluid systems. Our interest is primarily driven by drag reduction using superhydrophobic surfaces (SHS) or liquid-infused surfaces (LIS) where the longevity and performance strongly depends on the flow stability. Although the review is limited to immiscible, incompressible, Newtonian fluids with constant properties, the subject is rich in complexity. We focus on three canonical plane parallel flows as part of the general problem: pressure-driven flow, shear-driven flow, and flow down an inclined plane. Based on the linear stability, the flow may become unstable to three modes of instabilities: a Tollmein–Schlichting wave in either the upper fluid layer or the lower fluid layer, and an interfacial mode. These instabilities may be further categorized according to the physical mechanisms that drive them. Particular aspects of weakly nonlinear analyses are also discussed, and some directions for future research are suggested.

1987 ◽  
Vol 178 ◽  
pp. 491-506 ◽  
Author(s):  
D. R. Jenkins

We consider finite-amplitude thermal convection, in a horizontal fluid layer. The viscosity of the fluid is dependent upon its temperature. Using a weakly nonlinear expansion procedure, we examine the stability of two-dimensional roll and three-dimensional square planforms, in order to determine which should be preferred in convection experiments. The analysis shows that the roll planform is preferred for low values of the ratio of the viscosities at the top and bottom boundaries, but the square planform is preferred for larger values of the ratio. At still larger values, subcritical convection is predicted. We also include the effects of boundaries having finite thermal conductivity, which enables favourable comparison to be made with experimental studies. A discrepancy between the present work and a previous study of this problem (Busse & Frick 1985) is discussed.


Author(s):  
D. H. Michael

The ordinary theory of stability of plane parallel flows is considerably simplified by a result due to Squire (2) which says that if a velocity profile becomes unstable to a small three-dimensional disturbance at a given Reynolds number, then it will become unstable to a small two-dimensional disturbance at a lower Reynolds number. This result enables us to restrict investigation of the stability to the cases of two-dimensional disturbances.


Sign in / Sign up

Export Citation Format

Share Document