Effects of Second-Order Slip and Magnetic Field on Mixed Convection Stagnation-Point Flow of a Maxwellian Fluid: Multiple Solutions

2016 ◽  
Vol 138 (12) ◽  
Author(s):  
M. M. Rahman

In this paper, we investigate the effects of second-order slip and magnetic field on the nonlinear mixed convection stagnation-point flow toward a vertical permeable stretching/shrinking sheet in an upper convected Maxwell (UCM) fluid with variable surface temperature. Numerical results are obtained using the bvp4c function from matlab for the reduced skin-friction coefficient, the rate of heat transfer, the velocity, and the temperature profiles. The results indicate that multiple (dual) solutions exist for a buoyancy opposing flow for certain values of the parameter space irrespective to the types of surfaces whether it is stretched or shrinked. It is found that an applied magnetic field compensates the suction velocity for the existence of the dual solutions. Depending on the parametric conditions; elastic parameter, magnetic field parameter, first- and second-order slip parameters significantly controls the flow and heat transfer characteristics. The illustrated streamlines show that for upper branch solutions, the effects of stretching and suction are direct and obvious as the flow near the surface is seen to suck through the permeable sheet and drag away from the origin of the sheet. However, aligned but reverse flow occurs for the case of lower branch solutions when the mixed convection effect is less significant.

2019 ◽  
Vol 30 (3) ◽  
pp. 1345-1364 ◽  
Author(s):  
Mohamad Mustaqim Junoh ◽  
Fadzilah Md Ali ◽  
Norihan Md Arifin ◽  
Norfifah Bachok ◽  
Ioan Pop

Purpose The purpose of this paper is to investigate the steady magnetohydrodynamics (MHD) boundary layer stagnation-point flow of an incompressible, viscous and electrically conducting fluid past a stretching/shrinking sheet with the effect of induced magnetic field. Design/methodology/approach The governing nonlinear partial differential equations are transformed into a system of nonlinear ordinary differential equations via the similarity transformations before they are solved numerically using the “bvp4c” function in MATLAB. Findings It is found that there exist non-unique solutions, namely, dual solutions for a certain range of the stretching/shrinking parameters. The results from the stability analysis showed that the first solution (upper branch) is stable and valid physically, while the second solution (lower branch) is unstable. Practical implications This problem is important in the heat transfer field such as electronic cooling, engine cooling, generator cooling, welding, nuclear system cooling, lubrication, thermal storage, solar heating, cooling and heating in buildings, biomedical, drug reduction, heat pipe, space aircrafts and ships with better efficiency than that of nanofluids applicability. The results obtained are very useful for researchers to determine which solution is physically stable, whereby, mathematically more than one solution exist. Originality/value The present results are new and original for the problem of MHD stagnation-point flow over a stretching/shrinking sheet in a hybrid nanofluid, with the effect of induced magnetic field.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
M. Suali ◽  
N. M. A. Nik Long ◽  
N. M. Ariffin

The unsteady stagnation point flow and heat transfer over a stretching/shrinking sheet with suction/injection is studied. The governing partial differential equations are converted into nonlinear ordinary differential equations using a similarity transformation and solved numerically. Both stretching and shrinking cases are considered. Results for the skin friction coefficient, local Nusselt number, velocity, and temperature profiles are presented for different values of the governing parameters. It is found that the dual solutions exist for the shrinking case, whereas the solution is unique for the stretching case. Numerical results show that the range of dual solutions increases with mass suction and decreases with mass injection.


2010 ◽  
Vol 78 (2) ◽  
Author(s):  
T. Ray Mahapatra ◽  
S. K. Nandy ◽  
A. S. Gupta

The steady two-dimensional magnetohydrodynamic (MHD) stagnation-point flow of an electrically conducting incompressible viscous fluid toward a shrinking sheet is investigated. The sheet is shrunk in its own plane with a velocity proportional to the distance from the stagnation-point and a uniform magnetic field is applied normal to the sheet. Velocity component parallel to the sheet is found to increase with an increase in the magnetic field parameter M. A region of reverse flow occurs near the surface of the shrinking sheet. It is shown that as M increases, the tendency of this flow reversal decreases. It is also observed that the nonalignment of the stagnation-point flow and the shrinking sheet considerably complicates the flow structure. The effect of the magnetic parameter M on the streamlines is shown for both aligned and nonaligned cases. The temperature distribution in the boundary layer is found when the surface is held at constant temperature. The analysis reveals that the temperature at a point increases with increasing M in a certain neighborhood of the surface but beyond this, the temperature decreases with increasing M. For fixed M, the surface heat flux decreases with increase in the shrinking rate.


Sign in / Sign up

Export Citation Format

Share Document